الجمهورية الجزائرية الديمقر اطية الشعبية وزارة التعليم العالي و البحث العلمي جامعة المدية

لجنة تنظيم مسابقة الالتحاق بالتكوين في الطور الثالث 2022-2021

إمتحان مسابقة الالتحاق بالتكوين في الطور الثالث 2021-2022

التخصص: فيزياء المواد	الشعبة: فيزياء	الميدان: علوم المادة
اليوم: 24 فيفري 2022	التوقيت: 15:00 المدة: 01:30	المادة: فيزياء الجسم الصلب و علم البلّورات

الموضوع الأول

Exercice 1 (14pts):

Le cristal de cadmium (Cd) cristallise dans le groupe d'espace P6₃/mmc, le motif est constitué de deux atomes de cadmium placés en: (0, 0, 0); (1/3, 2/3, 1/2). Le réseau réciproque associé à cette structure est défini dans un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$ par les vecteurs:

$$\overrightarrow{a^*} = \frac{1}{\sqrt{3}a}\overrightarrow{i} + \frac{1}{a}\overrightarrow{j};$$

$$\overrightarrow{a^*} = \frac{1}{\sqrt{3}} \overrightarrow{a} \overrightarrow{l} + \frac{1}{a} \overrightarrow{j}; \qquad \overrightarrow{b^*} = \frac{-1}{\sqrt{3}} \overrightarrow{l} + \frac{1}{a} \overrightarrow{j}; \qquad \overrightarrow{c^*} = \frac{1}{c} \overrightarrow{k}$$

$$\overrightarrow{c^*} = \frac{1}{c} \overrightarrow{k}$$

a et c sont des constantes positives.

- 1) Déterminer en fonction de a et c le volume V^* de la maille réciproque.
- 2) Déterminer dans le repère $(0, \vec{i}, \vec{j}, \vec{k})$ les vecteurs du réseau direct \vec{a} , \vec{b} et \vec{c} . En déduire leurs modules et les angles du réseau direct α , β et γ .
- 3) Identifier le réseau de Bravais et le système cristallin du cadmium.
- 4) Quel est le groupe ponctuel (notation d'Hermann-Mauguin) du cristal de cadmium.
- 5) Calculer les angles $(\overrightarrow{a^*}, \overrightarrow{a}), (\overrightarrow{b^*}, \overrightarrow{b})$ et $(\overrightarrow{c^*}, \overrightarrow{c})$.
- 6) Représenter le réseau direct en superposition sur le réseau réciproque.
- 7) Déterminer la distance inter-réticulaire d_{hkl} pour une famille de plan $(hk\ell)$.
- 8) Déterminer l'expression du facteur de structure $F_{hk\ell}$ du cadmium. En déduire son module.

Le diagramme de diffraction du cadmium, obtenu à partir d'un rayonnement X de longueur d'onde λ = 1.54 Å, présente deux premières raies (002) et (100) pour les angles $2\theta_{002}$ =31.98° et $2\theta_{100}$ =34.82°.

9) Calculer les paramètres a et c de la maille à partir de ces deux raies de diffraction.

Rappel: Le réseau réciproque est défini par les relations suivantes:

$$\overrightarrow{a^*} = \frac{\overrightarrow{b} \wedge \overrightarrow{c}}{V}; \quad \overrightarrow{b^*} = \frac{\overrightarrow{c} \wedge \overrightarrow{a}}{V}; \quad \overrightarrow{c^*} = \frac{\overrightarrow{a} \wedge \overrightarrow{b}}{V} \quad (V \text{ représente le volume de la maille directe})$$

Exercice 2 (6pts):

Soit un matériau dont lequel le niveau de Fermi $E_F = 4$ eV. Les électrons suivent une distribution de Fermi- Dirac (voir la fonction $\mathbf{f}(\mathbf{E})$ ci-dessous).

- 1) Déterminer l'énergie en fonction de kT et E_F pour laquelle la difference entre les fonctions de Boltzmann et Fermi-Dirac est de 5%.
- 2) Donner la température pour laquelle on obtient une probabilité de 1% qu'un état d'énergie de 0.20 eV au-dessous du niveau de Fermi soit vide.
- 3) Pouvez-vous utiliser la fonction de Boltzmann dans ce cas ?

$$f(E) = \frac{1}{(1 + e^{(E - E_F)/k T})}$$

(Constante de Boltzmann $k=1.3805 \ 10^{-23} \ J/K$).

Correction : Concours d'accès au doctorat (2021-2022). Epreuve Physique du solide et cristallographie. Sujet 1

Remarque: Une attention particulière doit être prise en considération pour les unités dans les calculs.

Exercice1. (14 points)

1) Détermination du volume V^* de la maille réciproque.

Le volume de la maille réciproque peut être calculé par le produit mixte:

$$V^* = \overrightarrow{a*}.(\overrightarrow{b*} \times \overrightarrow{c*}) = \begin{vmatrix} \frac{1}{\sqrt{3}a} & \frac{1}{a} & 0\\ \frac{-1}{\sqrt{3}a} & \frac{1}{a} & 0\\ 0 & 0 & \frac{1}{c} \end{vmatrix} = \frac{2}{\sqrt{3}a^2c}$$
(1pt)

2) Détermination des vecteurs \vec{a} , \vec{b} et \vec{c} du réseau direct.

En appliquant la définition du réseau direct, les vecteurs \vec{a} , \vec{b} et \vec{c} sont donnés par:

$$\vec{a} = \frac{\vec{b} * \wedge \vec{c} *}{V *}; \qquad \vec{b} = \frac{\vec{c} * \wedge \vec{a} *}{V *}; \qquad \vec{c} = \frac{\vec{a} * \wedge \vec{b} *}{V *}$$

Nous obtenons donc: $\vec{a} = \frac{\sqrt{3}a}{2}\vec{i} + \frac{a}{2}\vec{j}; \quad \vec{b} = -\frac{\sqrt{3}a}{2}\vec{i} + \frac{a}{2}\vec{j}; \quad \vec{c} = c\vec{k}$ (0.5 pt x 3)

-En déduire leurs modules et les angles directs α , β et γ .

• Les modules des vecteurs \vec{a} , \vec{b} et \vec{c} : $||\vec{a}|| = ||\vec{b}|| = a$ et $||\vec{c}|| = c$ (0.5 pt x 3)

Les angles directs sont obtenus à partir de la définition du produit scalaire:

Exemple: l'angle
$$\gamma$$
 est calculé: $\vec{a} \cdot \vec{b} = a \cdot b \cos \gamma = a^2 \cos \gamma = -\frac{3a^2}{4} + \frac{a^2}{4} = -\frac{a^2}{2}$

Nous obtenons:
$$\alpha = \beta = 90^{\circ}$$
 et $\gamma = 120^{\circ}$ (0.5 pt x 3)

3) Identification du réseau de Bravais et le système cristallin

Puisque le groupe d'espace est **P6**₃/mmc, le réseau de Bravais (mode de réseau) est :

$$\underline{Primitif(P).} \tag{0.5pt}$$

La maille cristalline est **hexagonale**

(0.5 pt)

Puisque : $\|\vec{a}\| = \|\vec{b}\| = a \ et \ \|\vec{c}\| = c$

$$\alpha=\beta=90^\circ$$
 et $\gamma=120^\circ$

4) Le groupe ponctuel du cadmium.

Le groupe ponctuel est 6/mmm

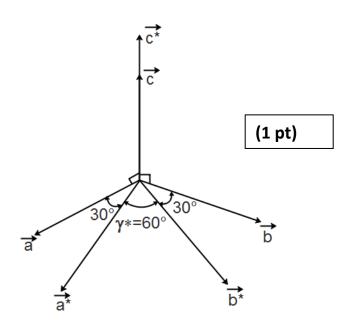
(0.5 pt)

5) Calcul des angles $(\widehat{a^*}, \overrightarrow{a}), (\widehat{b^*}, \widehat{b})$ et $(\widehat{c^*}, \widehat{c})$.

En appliquant la définition du produit scalaire: $\vec{a}^* \cdot \vec{a}$; $\vec{b}^* \cdot \vec{b}$ et $\vec{c}^* \cdot \vec{c}$

Nous obtenons:
$$(\widehat{a^*}, \widehat{a}) = 30^\circ$$
; $(\widehat{b^*}, \widehat{b}) = 30^\circ$; $(\widehat{c^*}, \widehat{c}) = 0^\circ$ (0.5 pt x 3)

6) Représentation du réseau direct en superposition sur le réseau réciproque.



7) Détermination de la distance inter-réticulaire d_{hkl} pour une famille du plan $(hk\ell)$.

La distance inter-réticulaire peut être calculée à partir du module de vecteur \vec{H}

$$d_{hk\ell} = \frac{1}{|\vec{H}|}$$
 avec $\vec{H} = h\vec{a*} + k\vec{b*} + \ell\vec{c*}$ est un vecteur du réseau réciproque.

$$\vec{H} = h(\frac{1}{\sqrt{3}a}\vec{i} + \frac{1}{a}\vec{j}) + k(\frac{-1}{\sqrt{3}a}\vec{i} + \frac{1}{a}\vec{j}) + \ell\frac{1}{c}\vec{k}$$

$$\vec{H} = (\frac{h-k}{\sqrt{3}a})\vec{i} + (\frac{h+k}{a})\vec{j} + \frac{\ell}{c}\vec{k}$$

$$d_{hk\ell} = \frac{1}{|\vec{H}|} \Leftrightarrow d_{hk\ell} = \frac{1}{\sqrt{\left[\frac{4}{3a^2}(h^2 + k^2 + hk) + \frac{\ell^2}{c^2}\right]}}$$
(1.5 pt)

8) Détermination de l'expression du facteur de structure $F_{hk\ell}$ du cadmium.

Nous avons deux atomes dans la maille en (0, 0, 0) et (1/3, 2/3, 1/2), le facteur de structure est donc donné par l'expression suivante:

$$F_{hk\ell} = \sum_{k=1}^{2} f_{Cd} e^{2\pi i (hx_k + ky_k + \ell z_k)}$$

$$F_{hk\ell} = f_{Cd} \left[e^{2\pi i (0+0+0)} + e^{2\pi i (\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2})} \right] = f_{Cd} \left[1 + e^{2\pi i (\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2})} \right]$$
(1 pt)

 f_{Cd} : représente le facteur de diffusion atomique

<u>Remarque:</u> l'expression du facteur de structure $F_{hk\ell} = \sum_{k=1}^{2} f_{Cd} e^{-2\pi i (hx_k + ky_k + \ell z_k)}$ est aussi acceptée.

-Le module: Le module du facteur de structure peut être obtenu par:

$$|F_{hkl}|^2 = F_{hkl} \times F_{hkl}^*$$

$$|F_{hk\ell}|^2 = f_{Cd} \left[1 + e^{2\pi i \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2} \right)} \right] \cdot f_{Cd} \left[1 + e^{-2\pi i \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2} \right)} \right]$$

$$|F_{hk\ell}|^2 = \left[2 + 2\cos \frac{\pi \Omega}{3} \pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2} \right) \right]$$

Nous savons que: $\cos 2\pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2}\right) = \cos^2\pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2}\right) - \sin^2\pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2}\right) = \cos^2\pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2}\right) = \cos^2\pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2}\right) = -1 + 2\cos^2\pi \left(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2}\right)$

$$|F_{hk\ell}|^2 = 4f_{Cd}^2 \cos^2(\frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2})\pi$$

$$|F_{hk\ell}| = 2f_{Cd} \left| \cos \frac{h}{3} + \frac{2k}{3} + \frac{\ell}{2} \pi \right|$$
 (1 pt)

9) Calcul des paramètres de maille a et c à partir des deux premières raies de diffractions

Nous savons, d'après la réponse de la question 7, que:

$$d_{hkl} = \frac{1}{\sqrt{\left[\frac{4}{3a^2}(h^2 + k^2 + hk) + \frac{\ell^2}{c^2}\right]}}$$

Donc:
$$d_{002} = \frac{c}{2}$$
 et $d_{100} = \frac{\sqrt{3}a}{2}$

En appliquant la relation de Bragg $2d_{hk\ell}sin\theta = \lambda$ pour les deux premières raies (002) et (100), nous trouvons:

$$2\theta_{002} = 31,98^{\circ}$$
: $c = \frac{\lambda}{\sin\theta} = \frac{1.54}{\sin 15.99} = 5.59 \text{Å}$ (0.5 pt)

$$2\theta_{100} = 34,82^{\circ}$$
: $a = \frac{\lambda}{\sqrt{3}\sin\theta} = \frac{1.54}{\sqrt{3}\sin 17.41} = 2.97\text{Å}$ (0.5 pt)

Exercice2 (6pts):

1. Energie en fonction de kT :
$$\frac{fBoltzmann - fFermi}{fFermi} = 0.05$$
 (1pts)

$$\rightarrow \frac{exp\left(\frac{EF-E}{kT}\right) - \frac{1}{\left(1 + e^{\left(E-E_F\right)/kT}\right)}}{\frac{1}{\left(1 + e^{\left(E-E_F\right)/kT}\right)}} = 0.05$$
(1pts)

$$\rightarrow E - E_F \sim 3 \ kT \tag{1pts}$$

2. Température pour probabilité 1% :

$$1 - \frac{1}{\left(1 + e^{(E - E_F)/kT}\right)} = 0.01 \to T = 505 K.$$
 (2pts)

3. Oui on peut utiliser la fonction de Boltzmann (0.5pts)

Car E-
$$E_F$$
= 0.2eV >> 3 kT. (0.5pts)

حيد مسابقة الالتحاق بالتكوين في الطور الثالث 2021-2022 لجنة تنظيم مسابقة الالتحاق بالتكوين في الطور الثالث

إمتحان مسابقة الالتحاق بالتكوين في الطور الثالث 2021-2022

التخصص: فيزياء المواد	الشعبة: فيزياء	الميدان: علوم المادة
اليوم: 24 فيفري 2022	التوقيت: 15:00 المدة: 01:30	المادة: فيزياء الجسم الصلب و علم البلورات

الموضوع الثاني

Exercice 1 (13Pts):

Une maille hexagonale multiple est décrite par les vecteurs de base $\overrightarrow{a_1}$, $\overrightarrow{b_1}$ et $\overrightarrow{c_1}$. Une deuxième maille primitive $(\overrightarrow{a_2}, \overrightarrow{b_2}, \overrightarrow{c_2})$ est définie à partir de $\overrightarrow{a_1}$, $\overrightarrow{b_1}$ et $\overrightarrow{c_1}$ selon les relations suivantes:

$$\begin{cases} \overrightarrow{a_2} = \frac{2}{3}\overrightarrow{a_1} + \frac{1}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1} \\ \overrightarrow{b_2} = \frac{-1}{3}\overrightarrow{a_1} + \frac{1}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1} \\ \overrightarrow{c_2} = \frac{-1}{3}\overrightarrow{a_1} - \frac{2}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1} \end{cases}$$

On donne: $a_1 = 5.736 \,\text{Å}$ et $c_1 = 11.238 \,\text{Å}$

Les deux bases, de même origine, sont reliées par la matrice de passage A (matrice de changement de base), comme suit:

$$\begin{pmatrix} \vec{a}_2 \\ \vec{b}_2 \\ \vec{c}_2 \end{pmatrix} = A \begin{pmatrix} \vec{a}_1 \\ \vec{b}_1 \\ \vec{c}_1 \end{pmatrix}$$

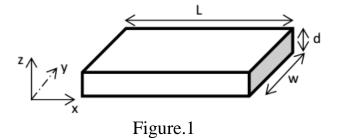
- 1) Trouver la matrice de passage A.
- 2) Calculer les valeurs des paramètres cristallographiques, a_2 , b_2 , c_2 , α_2 , β_2 et γ_2 de la maille 2. Puis, déterminer son système cristallin.
- 3) Calculer les volumes $(V_1$ et V_2) des deux mailles. En déduire la multiplicité de la maille hexagonale.
- 4) Trouver la matrice B reliant les coordonnées x2, y2, z2 aux coordonnées x1, y1, z1.
- 5) Calculer la distance AB entre deux points situés en A (2/3, 1/3, 1/3) et B (1/3, 2/3, 2/3) dans la maille $(\overrightarrow{a_1}, \overrightarrow{b_1}, \overrightarrow{c_1})$.
- 6) Quelle est l'équation cartésienne, relativement à la base $(\vec{a}_2, \vec{b}_2, \vec{c}_2)$, du premier plan appartenant à la famille des plans réticulaires (321).

7) Que devient l'équation du plan de la question 6 dans la base $(\vec{a}_1, \vec{b_1}, \vec{c_1})$. En déduire les valeurs des indices de Miller h_1 , k_1 et ℓ_1 de ce plan relativement à la base $(\vec{a}_1, \vec{b_1}, \vec{c_1})$.

Exercice 2 (7Pts):

On considère un semi-conducteur d'arséniure de gallium à la température 300 K. Un composant à effet Hall est fabriqué aux dimensions suivantes: d=0.01 cm, w=0.05 cm et L=0.5 cm (Figure. 1). Sous l'action d'une tension V_x =2 V appliquée suivant la longueur L, le composant est parcouru par un courant I_x =2.5 mA. L'application d'un champ magnétique perpendiculaire, B_z =2.5 10^{-2} Tesla, entraine une tension de Hall transversale V_H = - 4 mV.

- 1) Trouver le type de conductivité et la densité du courant traversant l'échantillon.
- 2) Montrer sur la figure.1 la distribution des charges électriques et la tension V_{H} résultante.
- 3) Calculer la concentration des porteurs majoritaires et leur mobilité.
- 4) Calculer la résistivité du matériau.



Correction: Concours d'accès au doctorat (2021-2022). Epreuve Physique du solide et cristallographie. Sujet 2

Remarque: Une attention particulière doit être prise en considération pour les unités dans les calculs.

Exercice1. (13 points)

1) La matrice de passage A.

$$\begin{cases}
\overrightarrow{a_2} = \frac{2}{3}\overrightarrow{a_1} + \frac{1}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1} \\
\overrightarrow{b_2} = \frac{-1}{3}\overrightarrow{a_1} + \frac{1}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1} \Leftrightarrow \mathbf{A} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
-\frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$
(1pt)

2) Calcul des paramètres cristallographiques, $a_2, b_2, c_2, \alpha_2, \beta_2$ et γ_2 de la 2^{ième} maille.

A partir de la définition du produit scalaire, on peut calculer a_2 , b_2 , c_2 , α_2 , β_2 et γ_2

Exemple:

$$a_{2}^{2} = \left[\frac{2}{3}\overrightarrow{a_{1}} + \frac{1}{3}\overrightarrow{b_{1}} + \frac{1}{3}\overrightarrow{c_{1}}\right] \cdot \left[\frac{2}{3}\overrightarrow{a_{1}} + \frac{1}{3}\overrightarrow{b_{1}} + \frac{1}{3}\overrightarrow{c_{1}}\right] = \left(\frac{2}{3}\right)^{2}a_{1}^{2} + \left(\frac{1}{3}\right)^{2}b_{1}^{2} + \left(\frac{1}{3}\right)^{2}c_{1}^{2} + \left(\frac{2}{3}\right) \cdot \left(\frac{1}{3}\right)\overrightarrow{a_{1}} \cdot \overrightarrow{b_{1}} + \left(\frac{1}{3}\right) \cdot \left(\frac{2}{3}\right)\overrightarrow{a_{1}} \cdot \overrightarrow{b_{1}}$$

Nous savons que pour une maille hexagonale: $a_1 = b_1$ et $\gamma_1 = 120^\circ$

et comme
$$\overrightarrow{a_1}$$
. $\overrightarrow{b_1}=a_1^2\cos(120^\circ)=-\frac{1}{2}a_1^2$, Nous obtenons: $a_2=\frac{\sqrt{3a_1^2+c_1^2}}{3}$
Par la même méthode, nous pouvons montrer que $a_2=b_2=c_2=\frac{\sqrt{3a_1^2+c_1^2}}{3}$

A.N:
$$a_2 = b_2 = c_2 = \frac{\sqrt{3 \times (5.736)^2 + (11.238)^2}}{3} = 5 \text{ Å}$$
 (0.5pt x 3)

Les angles α_2 , β_2 et γ_2 sont aussi calculés par le produit scalaire:

$$\overrightarrow{a_2}. \overrightarrow{b_2} = \left(\frac{2}{3}\overrightarrow{a_1} + \frac{1}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1}\right). \left(\frac{-1}{3}\overrightarrow{a_1} + \frac{1}{3}\overrightarrow{b_1} + \frac{1}{3}\overrightarrow{c_1}\right) = \frac{2c_1^2 - 3a_1^2}{18}$$

d'un autre coté:
$$\overrightarrow{a_2}$$
. $\overrightarrow{b_2} = a_2 b_2 cos \gamma_2 = \left[\frac{\sqrt{3a_1^2 + c_1^2}}{3}\right]^2 cos \gamma_2$

Ce qui donne:
$$cos\gamma_2 = \frac{2c_1^2 - 3a_1^2}{2(c_1^2 + 3a_1^2)}$$

Par la méthode, nous pouvons montrer que: $cos\alpha_2 = cos\beta_2 = cos\gamma_2 = \frac{2c_1^2 - 3a_1^2}{2(c_1^2 + 3a_1^2)}$

A.N:
$$\alpha_2 = \beta_2 = \gamma_2 = \frac{2 \times 11.238^2 - 3 \times 5.736^2}{2(11.238^2 + 3 \times 5.736^2)} = 70^\circ$$
 (0.5pt x 3)

- Détermination du système cristallin.

$$a_2 = b_2 = c_2$$
 et $\alpha_2 = \beta_2 = \gamma_2$ la maille $(\overrightarrow{a_2}, \overrightarrow{b_2}, \overrightarrow{c_2})$ est donc **rhomboédrique** (trigonale). (1pt)

3) Calcul des volumes des deux mailles.

La maille 1 est hexagonale:
$$V_1 = a_1^2 c_1 \sin \gamma_1 = 5.736^2 \times 11.238 \times \sin (120^\circ)$$
 A.N:
 $V_1 = 320.21 \,\text{Å}^3$ (0.5pt)

La maille 2 est rhomboédrique:
$$V_2=a_2^3(1-cos\gamma_2)\sqrt{1+2cos\gamma_2}$$
 =5³ $(1-cos\sqrt{7}0^\circ)\sqrt{1+2cos\sqrt{7}0^\circ)}$

A.N:
$$V_2 = 106.73 \,\text{Å}^3$$
 (0.5pt)

-La multiplicité de la maille hexagonale

Nous savons que la multiplicité de la maille 2 est égale à 1(maille primitive), le rapport des volumes donne la multiplicité de maille 1:

$$\frac{V_1}{V_2} = \frac{320,21}{106,73} = 3,00 \Leftrightarrow \text{donc la multiplicité de la maille 1 est égale à 3.}$$
 (1pt)

4) La matrice de changement de coordonnées B reliant les coordonnées x_2 , y_2 , z_2 aux coordonnées x_1 , y_1 et z_1 .

La matrice B peut être calculée à partir de la matrice A: $B = (A^T)^{-1}$. A^T est la matrice transposée de la matrice A.

$$B = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}^{-1} \text{ après le calcul, nous obtenons: } B = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$
 (2pts)

5) Calcul de la distance entre les points A (2/3, 1/3, 1/3) et B (1/3, 2/3, 2/3).

La distance AB est calculée en appliquant le produit scalaire: \overrightarrow{AB} . \overrightarrow{AB} .

$$\overrightarrow{AB} = \begin{pmatrix} \frac{1}{3} - 2/3 \\ \frac{2}{3} - 1/3 \\ \frac{2}{3} - 1/3 \end{pmatrix} = \begin{pmatrix} -1/3 \\ 1/3 \\ 1/3 \end{pmatrix} \Leftrightarrow AB^2 = \begin{pmatrix} -\frac{1}{3} \overrightarrow{a_1} + \frac{1}{3} \overrightarrow{b_1} + \frac{1}{3} \overrightarrow{c_1} \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} \overrightarrow{a_1} + \frac{1}{3} \overrightarrow{b_1} + \frac{1}{3} \overrightarrow{c_1} \end{pmatrix}$$

On obtient:
$$AB = \frac{\sqrt{3a_1^2 + c_1^2}}{3} = \frac{\sqrt{3 \times 5.736^2 + 11.238^2}}{3}$$
A.N: $AB = 5.00$ Å (1pt)

6) L'équation cartésienne du premier plan appartenant à la famille de plans réticulaires (321),

L'équation du premier plan (n=1) de la famille des plans $(h_2k_2\ \ell_2)$, relativement à la base $(\vec{a}_2, \vec{b_2}, \vec{c_2})$, est donnée par : $h_2x_2 + k_2y_2 + \ell_2z_2 = 1$

Pour la famille des plans (321), nous obtenons donc l'équation:

$$3x_2 + 2y_2 + z_2 = 1 (1pt)$$

7) L'équation du plan de la question 6 lorsque l'on se réfère à la base $(\vec{a}_1, \vec{b_1}, \vec{c_1})$.

Nous utilisons la matrice B (matrice de changement de coordonnées)

Nous savons que:
$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} x_1 + z_1 \\ -x_1 + y_1 + z_1 \\ -y_1 + z_1 \end{pmatrix}$$

En substituant dans l'équation $3x_2 + 2y_2 + z_2 = 1$, nous trouvons:

$$3(x_1 + z_1) + 2(-x_1 + y_1 + z_1) + (-y_1 + z_1) = 1$$

c'est-à-dire:
$$x_1 + y_1 + 6z_1 = 1$$
 (*) (1pt)

-les valeurs des indices de Miller h_1 , k_1 et ℓ_1 relativement à la base à la base $(\vec{a}_1, \vec{b_1}, \vec{c_1})$.

Puisque l'équation du premier plan de la famille $(h_1k_1 \ \ell_1)$, relativement à la base $(\vec{a}_1, \vec{b_1}, \vec{c_1})$ est de la forme $h_1x_1 + k_1y_1 + \ell_1z_1 = 1$

Par identification (voir équation *), on obtient $(h_1k_1 \ell_1) = (116)$ (1pt)

Exercice2 (7points)

1. Type de conductivité et densité de courant :

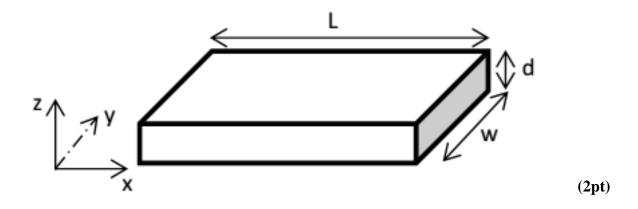
La tension de Hall est donnée par : $V_H = (I_x \, B \, / d) \, (-1/n \, e) \, = -4 \, mV < 0$,

Implique selon la géométrie que les porteurs de charge sont les électrons. (1pt)

Densité du courant

$$J = I_x/S = 2.5 \cdot 10^{-3} / (0.01 \cdot 0.05) = 5 \text{ A.cm}^{-2}$$
. (1pt)

2. Distribution des charges sur la figure:



3. Concentration des porteurs majoritaires et leur mobilité :

$$n = (I_x B/d) (-1/V_H e) = 9.76 \cdot 10^{14} \text{ cm}^{-3}.$$
 (1pt)

$$\mu_n = \frac{Ix L}{e \, n \, Vx \, W \, d} = 8004 \, \text{cm}^2/\text{V.s.}$$
 (1pt)

4. Résistivité du matériau :

$$\rho_n = \frac{1}{\sigma_n} = \frac{1}{\mu_n \, n \, e} = 0.8 \, \Omega \, \text{.cm}.$$
(1pt)

الجمهورية الجزائرية الديمقر اطية الشعبية وزارة التعليم العالي و البحث العلمي جامعة المدية كلية العلوم كلية العلوم كلية العلوم لجنة تنظيم مسابقة الالتحاق بالتكوين في الطور الثالث 2021-2022

إمتحان مسابقة الالتحاق بالتكوين في الطور الثالث 2021-2022

التخصص: فيزياء المواد	الشعبة: فيزياء	الميدان: علوم المادة
اليوم: 24 فيفري 2022	التوقيت: 15:00 المدة: 01:30	المادة: فيزياء الجسم الصلب و علم البلّورات

الموضوع الثالث

Exercice 1 (12pts):

- a. On considère une plaquette d'arséniure de gallium de 200 μm d'épaisseur et de section $10^4 \mu m^2$ (300 K). Le GaAs se cristallise dans un système cubique de paramètre de maille a=5.65 Å. Les atomes du gallium occupent les sommets et les centres des faces. Supposer que les atomes sont des sphères dures en contact entre plus proches voisins.
 - 1) Décrire la structure cristalline du GaAs.
 - 2) Quel est le nombre des 1^{er} plus proches voisins et la distance qui les sépare ?
 - 3) Quel est le type de liaisons chimiques dominant dans la structure ?
 - 4) Calculer la densité des atomes dans la structure (nombre d'atomes par cm³).
 - 5) Donner la concentration intrinsèque (ni) des porteurs de charges.
- b. On introduit de manière uniforme des atomes de silicium (Si) comme dopant dans le GaAs (une proportion d'un atome de Si pour 4 10⁶ atomes dans le GaAs). 90% des atomes Si viennent se placer en position substitutionnelle des atomes Ga et 10% viennent se placer en position substitutionnelle des atomes As.
 - 1) Donner la concentration des atomes de Silicium introduits dans la plaquette du GaAs.
 - 2) Donner la concentration des atomes donneurs et accepteurs.
 - 3) Quel est le type du dopage, déduire les concentrations en électrons et en trous.
 - 4) Donner la résistivité de la plaquette.

- c. La plaquette du GaAs est de nouveau dopée sur une profondeur de 30 μm par le manganèse (Mn) (une proportion d'un atome de Mn pour 10^6 atomes dans le GaAs). Les atomes Mn introduit, prennent des positions de substitution des atomes Ga.
 - 1) Donner la concentration des atomes de manganèse introduits.
 - 2) Donner la concentration des atomes accepteurs et déduire les concentrations en électrons et en trous.
 - 3) Donner la résistivité dans cette zone.
 - 4) Calculer la tension de diffusion dans la plaquette.
 - 5) Trouver le courant circulant dans le circuit si une tension de 2 V est appliquée dans le sens direct de polarisation aux bornes de la plaquette.

$$\mu_{\rm n} = 9000 \ cm^2/{\rm V.s.}, \ \mu_{\rm p} = 400 \ cm^2/{\rm V.s.}, \ \rho_{\rm i} = 3.3 \ 10^8 \ \Omega.cm, \ k_B = 1.3805 \ 10^{-23} {\rm J/K.},$$

$$e = -1.6 \ 10^{-19} \ C. \ {\rm Densit\acute{e}} \ {\rm des} \ {\rm porteurs} \ {\rm de} \ {\rm charges} \ n = N_c \ e^{-(E_F - E_c)/k_B T} \ {\rm et} \ p = N_v \ e^{-(E_F - E_v)/k_B T}.$$

Exercice 2 (8pts):

Le diagramme de diffraction d'un cristal appartient au système cubique montre l'intensité diffractée en fonction de l'angle 2θ . Les valeurs obtenues sont regroupées dans le tableau ci-dessous. La longueur d'onde utilisée pour l'analyse est $\lambda = 1.54 \, \mathring{A}$.

Numéro	2θ (degré)	Intensité (u.a.)	(hkℓ)
de la raie			
1	43,3167	100	
2	50.4491	44	
3	74.1257	20	
4	89.9370	21	
5	95.1469	6	
6	116.9330	3	

u.a.: unité arbitraire

- 1) Tracer le diagramme de diffraction correspondant.
- 2) Indexer les raies de diffraction.
- 3) Identifier le réseau de Bravais.
- 4) Calculer le paramètre de la maille.
- 5) Calculer la masse volumique sachant que le motif est composé d'un seul atome de masse molaire M= 63.5 g.mol⁻¹.

Le nombre d'Avogadro: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Dans l'exercice, on s'intéresse uniquement à la diffraction du premier ordre.

Correction: Concours d'accès au doctorat (2021-2022). Epreuve Physique du solide et cristallographie. Sujet 3

Remarque: Une attention particulière doit être prise en considération pour les unités dans les calculs.

Exercice1. (12 points)

a. 1. Structure du GaAs :

Type Zinc Blende	(0.25 pt)
Deux réseaux CFC interpénétrés décalés d'un ¼ de diagonale.	(0.5 pt)
Deux atomes différents par cellule primitive.	(0.25 pt)

Distance entre 1PPV =
$$a \frac{\sqrt{3}}{4} = 2.446 \text{ Å}$$
. (0.5 pt)

3. Liaisons chimiques

L'atome Ga est au centre d'un tétraèdre de 4 atomes As aux sommets,	(0.25 pt)
Une possibilité d'hybridation sp ³ ,	$(0.25 \mathrm{pt})$
Domination de liaison covalente	(0.5 nt)

4. Densité des atomes :
$$N = \frac{8}{a^3} = 4.44 \cdot 10^{22} \text{ cm}^{-3}$$
. (0.5 pt)

5.
$$n_i = 1/\rho_i e \left(\mu_n + \mu_p\right) = 2.015 \cdot 10^6 \text{ cm}^{-3}$$
. (0.5 pt)

b. Dopage au silicium.

1. Concentration des atomes de Silicium introduits dans le GaAs.

$$N_{Si} = 4.44 \ 10^{22} / 4 \ 10^6 = 1.11 \ 10^{16} \text{cm}^{-3}.$$
 (0.5pt)

2. Concentration des atomes accepteurs.

$$N_a = 10\% N_{Si} = 0.111 10^{16} \text{ cm}^{-3}$$
. (0.5 pt)

- Concentration des atomes donneurs.

$$N_d = 90\% N_{Si} = 0.999 10^{16} \text{ cm}^{-3}$$
. (0.5 pt)

3. Dopage de type-n (car
$$N_d > N_a$$
). (0.5 pt)

Concentration en électron

$$n_n = N_d - N_a = 0.888 \cdot 10^{16} \text{ cm}^{-3},$$
 (0.5 pt)

Concentration en trous

$$p_n = n_i^2 / n_n = 4.5 \cdot 10^{-4} \text{ cm}^{-3}$$
. (0.5 pt)

4. Résistivité

$$\rho_n = 1/\sigma_n = 1/(e n_n \mu_n + e p_n \mu_p) = 0.0782 \Omega.cm.$$
 (1 pt)

c. Dopage au Mn

1. Concentration des atomes de manganèse (accepteur) introduits dans le GaAs.

$$N_{\text{Mn}} = 4.44 \ 10^{22} / \ 10^6 = 4.44 \ 10^{16} \text{cm}^{-3}.$$
 (0.5 pt)

2. La concentration des accepteurs (sans oublier les 10% du Si précédent).

$$N_a = N_{Mn} + N_{Si} = 4.55 \cdot 10^{16} \text{cm}^{-3}$$
. (0.5 pt)

Dopage de type P (car
$$N_a > N_d$$
). (0.5 pt)

Concentration en trous:

$$p_p = N_a - N_d = 4.551 \ 10^{16} - 0.999 \ 10^{16} = 3.55 \ 10^{16} \text{ cm}^{-3},$$
 (0.5 pt)

Concentration en électrons:

$$n_p = ni^2/p = 1.14 \cdot 10^{-4} \text{ cm}^{-3}$$
. (0.5 pt)

3. **Résistivité**
$$\rho_p = 1/\sigma_p = 1/(e n \mu_n + e p \mu_p) = 0.44 \Omega.cm.$$
 (0.5 pt)

4. Tension de diffusion
$$V_d = (E_{Cp} - E_{Cn}) / e = \frac{kT}{e} ln \left(\frac{n_n}{n_n}\right) = 1.2 \text{ V}.$$
 (0.5 pt)

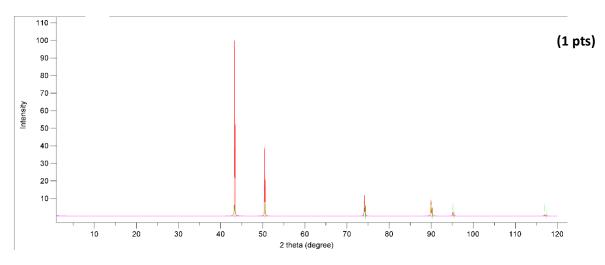
5. La diode est polarisé avec une tension directe de 2 V supérieure à V_d , un courant direct I circule dans les résistances série de la diode :

$$R = \rho_p \frac{l1}{s} + \rho_n \frac{l2}{s} = 26.5 \,\Omega.$$
 (0.25 pt)

$$I = \frac{V - Vd}{R} = \frac{2 - 1.2}{26.5} = 30 \text{ mA}.$$
 (0.25 pt)

Exercice2 (8points)

1) Représentation du diagramme de diffraction



2) Indexation des raies de diffraction.

En considérant que tous les pics correspondent aux diffractions d'ordre 1.

La loi de Bragg est écrite: $2d_{hl\ell}sin\theta = \lambda$ (*) (0.5pt)

Les distances inter-réticulaires $d_i = \frac{\lambda}{\sin \theta_i}$

Dans une structure cubique $d_{hk\ell} = \frac{a}{\sqrt{h^2 + k^2 + \ell^2}}$ (a est le paramètre de la maille) (0.5pt)

Numéro de la raie	2θ (degré)	(h k l)		$a_i (\mathring{A})$ $a_i = \frac{\lambda \sqrt{h^2 + k^2 + \ell^2}}{2 sin \theta_i}$
1	43,3167	(111)→	(0.5 pts)	3.6133
2	50.4491	(200))→	(0.5 pts)	3.6133
3	74.1257	(220))→	(0.5 pts)	3.6135
4	89.9370	(311))→	(0.5 pts)	3.6137
5	95.1469	(222))→	(0.5 pts)	3.6138
6	116.9330	(400))→	(0.5 pts)	3.6137

Remarque: Détail de calcul

La série des rapports $\frac{d_{hk\ell}}{d_{111}}$ est calculé en prenant le premier pic est (111). Ce qui donne:

$$\frac{d_{hk\ell}}{d_{111}} = \frac{\frac{a}{\sqrt{h^2 + k^2 + \ell^2}}}{\frac{a}{\sqrt{1^2 + 1^2 + 1^2}}} - \frac{\sqrt{3}}{\sqrt{h^2 + k^2 + \ell^2}}$$

Le choix du premier plan (111) convient aux valeurs: $\frac{d_i}{d_1} = \frac{\frac{\lambda}{\sin \theta_i}}{\frac{\lambda}{\sin \theta_1}} = \frac{\sin \theta_1}{\sin \theta_i}$ (voir le tableau).

Numéro	2θ	$sin\theta_i$	$\frac{d_i}{d_1} = \frac{\sin \theta_1}{\sin \theta_i}$	$h^2 + k^2$	$d_{hk\ell} = \sqrt{3}$	(h k ℓ)	a_i (Å)
de la	(degré)		$u_1 sin \theta_i$	$+\ell^2$	$d_{111} - \sqrt{h^2 + k^2 + \ell^2}$. (-2 -2 -2
raie							$\int_{a} -\frac{\lambda\sqrt{h^2+k^2+\ell^2}}{2}$
							$a_i = {2sin\theta_i}$
1	43,3167	0.3691	1	3	1	(111)	3.6133
2	50.4491	0.4262	0.8660	4	0.8660	(200)	3.6133
3	74.1257	0.6027	0.6124	8	0.6124	(220)	3.6135
4	89.9370	0.7067	0.5223	11	0.5222	(311)	3.6137
5	95.1469	0.7381	0.5001	12	0.5000	(222)	3.6138
6	116.9330	0.8523	0.4331	16	0.4330	(400)	3.6137

3) Identification du réseau de Bravais.

Nous constatons, d'après le tableau, qu'il y a diffraction lorsque tous les indices de Miller sont :

- de même parité (tous paire ou tous impaire), (0.5pt)
- Le réseau de Bravais est donc cubiques à faces centrés (cubique F). (0.5pt)

4) Calcul du paramètre de la maille

La valeur moyenne du paramètre de maille est calculée à partir du tableau.

$$a_{moy} = \frac{a_1 + a_2 + a_3 + a_4 + a_5 + a_6}{6} \approx 3.61 \text{ Å}$$
 (0.5pt)

5) Calcul de la masse volumique

Le réseau de Bravais est cubique à faces centrées (nous avons 4 nœuds/ maille), ce qui donne aussi 4 motifs par maille

$$\rho = \frac{4M}{N_A a^3} \tag{1pt}$$

A.N:

$$\rho = \frac{4 \times 63.5 \times 10^{-3}}{6.02 \times 10^{23} \times (3.61 \times 10^{-10})^3} = 0.897 \times 10^4 \frac{kg}{m^3} = 8.97 \text{ g/cm}^3$$
 (0.5pt)