

University of Medea
Faculty of Science
Departement of Mathematics and Computer Science Academic year 2023/2024

Analysis 1

CHAPTER 1

FIELD OF REAL NUMBERS

1.1 Introduction

1.1.1 Sets

Let S be a set

- If x is an element of S , then we write $x \in S$ (x belongs to S), otherwise we write $x \notin S$ (x does not belong to S).
- A set A is called a subset of S , if each element of A is also an element of S , that is $a \in A$ then $a \in S$.
To denote that A is a subset of S we write $A \subset S$.
If $A \subset B$ and $B \subset A$ then $A = B$.
- Let A and B two subsets of S . The union of A and B is the set

$$A \cup B = \{x \in S, x \in A \text{ or } x \in B\}$$

and the intersection of A and B is the set

$$A \cap B = \{x \in S, x \in A \text{ and } x \in B\}$$

- The empty set is the set that does not contain any elements, and is denoted by \emptyset .
We note that $\emptyset \subset S$ for any set S .
- A and B are disjoint if $A \cap B = \emptyset$.
- The complement of A in S is the set

$$S \setminus A = \{x \in S, x \notin A\}$$

(S excluded A)

- The cartesian product of A and B , denoted by $A \times B$ is the set of ordered pairs (a, b) where $a \in A$ and $b \in B$ in other words

$$A \times B = \{(a, b), a \in A \text{ and } b \in B\}$$

- The power set of S is the set of all subsets of S and is denoted by $\mathcal{P}(S)$ or 2^S and we have

Example 1.1. Let $S = \{1, 2, 3\}$. Then

$$\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{2, 3\}, \{1, 3\}, S\}.$$

Notations

- \mathbb{N} is the set of natural numbers $\{0, 1, 2, \dots\}$.
- \mathbb{Z} is the set of relative integers $\{\dots, -2, -1, 0, 1, 2, \dots\}$.
- $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

1.1.2 Set of rational numbers \mathbb{Q}

By definition, the set of rational numbers is

$$\mathbb{Q} = \left\{ \frac{p}{q}; p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}.$$

Example 1.2. $0, -1, \frac{2}{5}, \frac{-3}{4}$ are rational numbers

Decimal numbers are rational numbers of the form $\frac{p}{10^n}; p \in \mathbb{Z}, n \in \mathbb{N}$.

Example 1.3. $0, 5 = \frac{5}{10}, -1, \frac{6}{25} = \frac{24}{10^2}$ are decimal numbers

1.2 Mathematical induction

Lemma 1.1. Every non-empty subset of \mathbb{N} contains a smallest element.

Theorem 1.1. Let $S \subset \mathbb{N}$ be a set such that $0 \in S$, and if $k \in S$ then $k + 1 \in S$. Then $S = \mathbb{N}$.

Mathematical induction

Let $P(n)$ be a proposition depending on $n \in \mathbb{N}$. It can, for each n , be true or false. To show that $P(n)$ is true for all n , it suffices to verify that $P(0)$ is true then verify that $P(n + 1)$ is true assuming that $P(n)$ is true.

Example 1.4. Let $r \in \mathbb{R} \setminus \{1\}$. Let us show, by induction, that for all $n \in \mathbb{N}$,

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

The formula is trivial if $n = 0$. Assuming that

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r},$$

we will have

$$1 + r + r^2 + \dots + r^n + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + r^{n+1} = \frac{1 - r^{n+2}}{1 - r}.$$

Then the formula is true for $n + 1$. By induction we have

$$\forall n \in \mathbb{N}, 1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

Theorem 1.2. Let $a, b \in \mathbb{R}$. For all $n \in \mathbb{N}$,

$$a^{n+1} - b^{n+1} = (a - b)(a^n + a^{n-1}b + \cdots + ab^{n-1} + b^n) = (a - b) \sum_{k=0}^n a^{n-k}b^k.$$

Proof. We can assume that $a \neq 0$ and $a \neq b$. By dividing by a^{n+1} , we see that it is a question of demonstrating the equality

$$1 - \frac{b^{n+1}}{a^{n+1}} = \left(1 - \frac{b}{a}\right) \left(1 + \frac{b}{a} + \left(\frac{a}{b}\right)^2 + \cdots + \left(\frac{a}{b}\right)^n\right),$$

or again, by setting $r = b/a$ and dividing by $1 - r$,

$$1 + r + r^2 + \cdots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

□

The following theorem is stated using numbers called coefficients of the binomial which are written themselves in terms of so-called factorial numbers: by definition,

$$n! = 1 \times 2 \times \cdots \times n, \quad n \in \mathbb{N}^*, \quad \text{et} \quad 0! = 1$$

and

$$C_n^k = \frac{n!}{k!(n-k)!}.$$

Theorem 1.3. Let $a, b \in \mathbb{R}$. For all $n \in \mathbb{N}$,

$$(a + b)^n = \sum_{k=0}^n C_n^k a^{n-k}b^k.$$

1.3 Set of real numbers \mathbb{R}

Proposition 1.4. A number is rational if and only if it admits periodic or finite decimal writing.

Example 1.5. $\frac{3}{10} = 0,3$, $\frac{-5}{2} = -2.5$, $\frac{4}{3} = 1,333\dots$

Remark 1.1. If a number is not rational, we say it is irrational.

Definition 1.1 (Set of real numbers). The set of real numbers \mathbb{R} is the union of rational and irrational numbers.

Example 1.6. $2, -9, 4.5, \frac{4}{11}, \sqrt{2}, \pi, e$ are real numbers

1.3.1 $(\mathbb{R}, +, \cdot)$ is a commutative field

1. The addition (+) in \mathbb{R} satisfies the following properties:

- 1) It is associative: $\forall a, b, c \in \mathbb{R}, (a + b) + c = a + (b + c)$.
- 2) It has a neutral element 0: $\forall a \in \mathbb{R}, a + 0 = 0 + a = a$.
- 3) Every real has an opposite: $\forall a \in \mathbb{R}, \exists b \in \mathbb{R} : a + b = b + a = 0$, the number b opposite a is denoted $-a$.
- 4) It is commutative: $\forall a, b \in \mathbb{R}, a + b = b + a$.

2. Multiplication (\cdot) in \mathbb{R} verifies the following properties:

- 1) It is associative: $\forall a, b, c \in \mathbb{R}, (a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- 2) It has a neutral element 1: $\forall a \in \mathbb{R}, a \cdot 1 = 1 \cdot a = a$.
- 3) Every non-zero real has an inverse: $\forall a \in \mathbb{R}^*, \exists b \in \mathbb{R}^* : a \cdot b = b \cdot a = 1$, the number b inverse of a is denoted a^{-1} or $1/a$.
- 4) It is commutative: $\forall a, b \in \mathbb{R}, a \cdot b = b \cdot a$.

In addition, we have:

1. Multiplication (\cdot) in \mathbb{R} is distributive relative to addition:

$$\forall a, b, c \in \mathbb{R}, a \cdot (b + c) = a \cdot b + a \cdot c.$$

2. If $a \cdot b = 0$, then $a = 0$ or $b = 0$.

We say that $(\mathbb{R}, +, \cdot)$ is a commutative field.

1.3.2 (\mathbb{R}, \leq) is totally ordered

Consider on \mathbb{R} the relation \leq .

For all $a, b, c \in \mathbb{R}$, we have:

1. $a \leq a$. (\leq is reflexive).
2. If $a \leq b$ and $b \leq a$, then $a = b$. (\leq is antisymmetric)
3. If $a \leq b$ and $b \leq c$, then $a \leq c$. (\leq is transitive).

In addition we have: $\forall a, b \in \mathbb{R}, a \leq b$ or $b \leq a$.

We say that (\mathbb{R}, \leq) is totally ordered.

Remark 1.2. The operations $(+)$ and (\cdot) on \mathbb{R} are compatible with the order relation \leq in the following sense, for real numbers a, b, c, d :

- . If $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.
- . If $a \leq b$ and $c \geq 0$, and $a \cdot c \leq b \cdot c$.
- . If $a \leq b$ and $c \leq 0$, then $a \cdot c \geq b \cdot c$.

1.4 The absolute value

Definition 1.2. Let $x \in \mathbb{R}$. We define the absolute value of x as being the positive real number, denoted $|x|$ given by:

$$|x| = \begin{cases} x, & \text{si } x \geq 0, \\ -x, & \text{si } x < 0. \end{cases}$$

Theorem 1.5. Let $x, y \in \mathbb{R}$ and $r \in \mathbb{R}_+^*$, we have:

1) $ x \geq 0$,	2) $ x = 0$, $\text{ssi } x = 0$,
3) $ xy = x y $ et $ -x = x $,	4) $ x+y \leq x + y $,
5) $\sqrt{x^2} = x $,	6) $ x - y \leq x+y $,
7) $ y-x \leq r$, $\text{ssi } x-r \leq y \leq x+r$.	

1.5 Intervals

Definition 1.3. An interval of \mathbb{R} is a subset I of \mathbb{R} satisfying the following property:

$$\text{Let } a, b \in I; \text{ if } a \leq x \leq b, \text{ then } x \in I.$$

Lemma 1.2. Interval \mathbb{R} is a set of one of the following forms:

• $\mathbb{R} = (-\infty, +\infty)$	• $[a, +\infty) = \{x \in \mathbb{R}; x \geq a\}$	• $(a, +\infty) = \{x \in \mathbb{R}; x > a\}$
• $(-\infty, b] = \{x \in \mathbb{R}; x \leq b\}$	• $(-\infty, b) = \{x \in \mathbb{R}; x < b\}$	• $[a, b] = \{x \in \mathbb{R}; a \leq x \leq b\}$
• $(a, b] = \{x \in \mathbb{R}; a < x \leq b\}$	• $[a, b) = \{x \in \mathbb{R}; a \leq x < b\}$	• $(a, b) = \{x \in \mathbb{R}; a < x < b\}$
• $\{a\} = [a, a]$	• $(a, a) = \emptyset$	

1.6 Upper bound, lower bound, least upper bound

Definition 1.4 (Greatest element or Maximum, Least element or Minimum). Let A be a non-empty part of \mathbb{R} and a real a . We say that a is::

- the greatest element of A if $a \in A$ and $\forall x \in A, x \leq a$.
- the Least element of A if $b \in A$ and $\forall x \in A, x \geq b$.

If it exists, the greatest element of A is unique. We will denote it by $\max A$. Similarly, if it exists, the least element of A is unique and we will denote it by $\min A$.

Example 1.7.

1. $\max[a, b] = b, \min[a, b] = a$.
2. The interval $]a, b[$ has neither a greatest element nor a least element.
3. \mathbb{N} has a least element 0 but it does not have a greatest element.

Definition 1.5 (Upper bound, lower bound). Let A be a non-empty part of \mathbb{R} . A real M is an upper bound of A if: $\forall x \in A, x \leq M$. A real m is a lower bound of A if: $\forall x \in A, x \geq m$.

Example 1.8.

1. $\sqrt{2}$ is an upper bound of $]0, 1[$.
2. $-1; 0.5, 1.3, 2$ are lower bounds of $]3, +\infty[$, but there is no upper bound.

Definition 1.6 (Supremum or Least upper bound, Infimum or Greatest lower bound). Let A be a non-empty part of \mathbb{R} .

1. The least upper bound of A is, if it exists, the smallest element of the set of upper bounds of A . It is denoted by $\sup A$.
2. The infimum of A is, if it exists, the greatest element of the set of lower bounds of A . It is denoted by $\inf A$.

Example 1.9. 1. 2 is the least upper bound of $]0, 2[$ or of $[0, 2]$.

2. 3 is the greatest lower bound of $[3, +\infty[$, But there is no supremum.

Lemma 1.3. If a subset A of \mathbb{R} has a supremum, then it is unique.

Proof. If a_1 and a_2 are supremums of A , then a_1 is an upper bound of A , hence $a_2 \leq a_1$. Similarly $a_1 \leq a_2$. Therefore $a_1 = a_2$. \square

Axiom of completeness

1. Every non-empty subset of \mathbb{R} that is bounded above has a least upper bound.
2. Similarly: Every non-empty subset of \mathbb{R} that is bounded below has a greatest lower bound

Characterization of the least upper bound

Theorem 1.6. Let A be a non-empty subset of \mathbb{R} that is bounded above, and let a be a real number. The following two statements are equivalent:

$$(1) \sup A = a$$

$$(2) \begin{cases} \forall x \in A, x \leq a, \text{ and} \\ \forall \epsilon > 0, \exists x_\epsilon \in A : a - \epsilon < x_\epsilon \leq a. \end{cases}$$

Proof.

1. (\implies) Suppose a is the least upper bound (supremum) of A . By definition, a is an upper bound of A , which satisfies the first assertion of (2). Let $\epsilon > 0$, if $a - \epsilon$ were also an upper bound of A , we would have $a \leq a - \epsilon$ which is false. Since $a - \epsilon$ is not an upper bound of A , there exists $x_\epsilon \in A$ such that $a - \epsilon < x_\epsilon$.
2. (\impliedby) Now suppose that (2) is true and show that a is the least upper bound of A . It is clear that a is an upper bound of A . We need to show that it is the smallest among the upper bounds of A . Suppose for contradiction that this is not the case. Then there exists a real number a' that is an upper bound of A and $a' < a$. Therefore:

$$\forall x \in A, \quad x \leq a' < a.$$

Let $\epsilon = a - a' > 0$. Applying (2), we can assert that there exists an element $x \in A$ such that $a - \epsilon < x \leq a$, meaning $a' < x \leq a$. This contradicts the assumption that a' is an upper bound of A , thereby proving the second implication by contradiction.

□

Corollary 1.7. Let A be a non-empty subset of \mathbb{R} that is bounded below, and let b be a real number, we have:

$$\inf A = b \iff \begin{cases} \forall x \in A, x \geq b, \quad \text{and} \\ \forall \epsilon > 0, \exists x_\epsilon \in A : b \leq x_\epsilon < b + \epsilon \end{cases}$$

1.7 Extended Real Line $\overline{\mathbb{R}}$

Definition 1.7. The extended real line, denoted as $\overline{\mathbb{R}}$, is obtained by adding two elements $+\infty$ and $-\infty$ to \mathbb{R} .

Notation: The order relation \leq on $\overline{\mathbb{R}}$ is extended as follows:

$$\forall x \in \overline{\mathbb{R}}, \quad x \leq +\infty \text{ and } x \geq -\infty.$$

Remark 1.3. $\overline{\mathbb{R}}$ has a greatest element: $+\infty$, and a least element: $-\infty$.

1.8 Archimedean Property

Theorem 1.8 (Archimedean Property). \mathbb{R} satisfies the following property, known as the Archimedean property:

$$\forall x \in \mathbb{R}_+^*, \forall y \in \mathbb{R}, \exists n \in \mathbb{N} : nx \geq y.$$

Proof. (by contradiction): Assume the negation of the statement. That is, suppose there exist $x \in \mathbb{R}_+^*$ and $y \in \mathbb{R}$ such that:

$$\forall n \in \mathbb{N} : nx < y.$$

Define the set $\mathcal{A} = \{nx \mid n \in \mathbb{N}\}$. This set is non-empty and bounded above by y . By the completeness axiom, \mathcal{A} has a least upper bound $a \in \mathbb{R}$. Specifically:

$$\forall n \in \mathbb{N} : nx \leq a,$$

which implies

$$\forall n \in \mathbb{N} : (n + 1)x \leq a.$$

Thus,

$$\forall n \in \mathbb{N} : nx \leq a - x.$$

Since $a - x$ is also an upper bound of \mathcal{A} and $x > 0$, we have $a - x < a$. Therefore, a is not the smallest upper bound of \mathcal{A} , contradicting the assumption that it is the least upper bound. \square

1.9 Integer Part

Lemma 1.4. *Let x a real. There exists a unique integer p such that:*

$$p \leq x < p + 1.$$

This integer is called the integer part of x , denoted $E(x)$ or $[x]$.

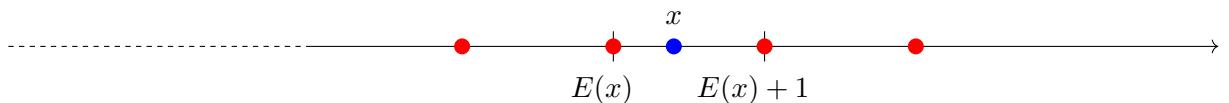


Figure 1.1: Integer Part

Example 1.10. $E(1.2) = 1, E(-0.6) = -1, E(\pi) = 3$.

Proof. Let $x \in \mathbb{R}$.

Consider the set $\mathbf{A} = \{n \in \mathbb{Z} \mid n \leq x\}$. To show that the integer part p of x exists, we need to demonstrate that the set \mathbf{A} has a greatest element. We have:

1. $\mathbf{A} \neq \emptyset$: - If $x \geq 0$, then $0 \leq x$ and thus $0 \in \mathbf{A}$. - If $x < 0$, then $-x \in \mathbb{R}_+^*$. According to the Archimedean property, there exists $n \in \mathbb{N}$ such that $n \cdot 1 \geq -x$, hence $-n \leq x$. Thus, $-n \in \mathbf{A}$.

2. \mathbf{A} is bounded above by x : - By the Archimedean property, there exists an integer greater than x , implying \mathbf{A} is an upper-bounded subset of \mathbb{Z} . \square

Remark 1.4. The following inequalities are often useful in exercises:

$$\forall x \in \mathbb{R}, \quad E(x) \leq x < E(x) + 1 \quad \text{and} \quad x - 1 < E(x) \leq x.$$

Definition 1.8. The integer part function E , or $[\cdot]$, maps each real number x to its corresponding integer p , the integer part of x .

1.10 Density of \mathbb{Q} in \mathbb{R}

Definition 1.9. A set A in \mathbb{R} is dense if:

$$\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists a \in A : |a - x| \leq \epsilon.$$

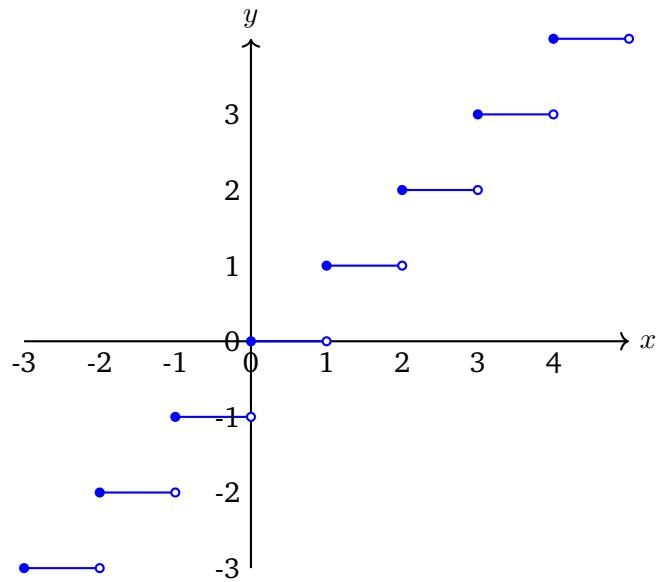


Figure 1.2: Integer Part Function

Theorem 1.9. \mathbb{Q} is dense in \mathbb{R} .

Proof. Let $x \in \mathbb{R}$ and $\epsilon > 0$. Consider an integer $q > 0$ such that $1/q \leq \epsilon$.

Let $p = E(qx)$. Then $p \leq qx < p + 1$, implying $p/q \leq x < (p + 1)/q$. Let $r = p/q$; r is rational.

Since $0 \leq x - r < 1/q \leq \epsilon$, we have $|r - x| \leq \epsilon$. □