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CHAPTER 1

FIELD OF REAL NUMBERS

1.1 Introduction

1.1.1 Sets

Let S be a set

• If x is an element of S, then we write x ∈ S (x belongs to S), otherwise we write x /∈ S (x
does not belongs to S).

• A set A is called a subset of S, if each element of A is also an element of S, that is a ∈ A
then a ∈ S.
To denote that A is a subset of S we write A ⊂ S.
If A ⊂ B and B ⊂ A then A = B.

• Let A and B two subsets of S. The union of A and B is the set

A ∪B = {x ∈ S, x ∈ A orx ∈ B}

and the intersection of A and B is the set

A ∩B = {x ∈ S, x ∈ A andx ∈ B}

• The empty set is the set that does not contain any elements, and is denoted by ∅.
We note that ∅ ⊂ S for any set S.

• A and B are disjoint if A ∩B = ∅.

• The complement of A in S is the set

S\A = {x ∈ S, x /∈ A}

(S excluded A )

• The cartesian product of A and B, denoted by A×B is the set of ordered pairs (a, b) where
a ∈ A and b ∈ B in other words

A×B = {(a, b), a ∈ A and b ∈ B}

• The power set of S is the set of all subsets of S and is denoted by P(S) or 2S and we have
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Mathematical induction 3

Example 1.1. Let S = {1, 2, 3}. Then

P(S) = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, S} .

Notations

• N is the set of natural numbers {0, 1, 2, ...}.

• Z is the set of relative integers {...,−2,−1, 0, 1, 2, ...}.

• N∗ = N \ {0} and Z∗ = Z \ {0}.

1.1.2 Set of rational numbers Q

By definition, the set of rational numbers is

Q =

{
p

q
; p ∈ Z, q ∈ N∗

}
.

Example 1.2. 0,−1, 25 ,
−3
4 are rational numbers

Decimal numbers are rational numbers of the form p
10n ; p ∈ Z, n ∈ N.

Example 1.3. 0, 5 = 5
10 ,−1,

6
25 = 24

102
are decimal numbers

1.2 Mathematical induction

Lemma 1.1. Every non-empty subset of N contains a smallest element.

Theorem 1.1. Let S ⊂ N be a set such that 0 ∈ S, and if k ∈ S then k + 1 ∈ S. Then S = N.

Mathematical induction
Let P (n) be a proposition depending on n ∈ N. It can, for each n, be true or false. To show
that P (n) is true for all n, it suffices to verify that P (0) is true then verify that P (n + 1) is
true assuming that P (n) is true.

Example 1.4. Let r ∈ R\{1}. Let us show, by induction, that for all n ∈ N,

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

The formula is trivial if n = 0. Assuming that

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
,

we will have

1 + r + r2 + · · ·+ rn + rn+1 =
1− rn+1

1− r
+ rn+1 =

1− rn+2

1− r
.
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Then the formula is true for n+ 1. By induction we have

∀n ∈ N, 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

Theorem 1.2. Let a, b ∈ R. For all n ∈ N,

an+1 − bn+1 = (a− b)(an + an−1b+ · · ·+ abn−1 + bn) = (a− b)
n∑
k=0

an−kbk.

Proof. We can assume that a 6= 0 and a 6= b. By dividing by an+1, we see that it is a question
of demonstrating the equality

1− bn+1

an+1
=

(
1− b

a

)(
1 +

b

a
+
(a
b

)2
+ · · ·+

(a
b

)n)
,

or again, by setting r = b/a and dividing by 1− r,

1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
.

The following theorem is stated using numbers called coefficients of the binomial which are
written themselves in terms of so-called factorial numbers: by definition,

n! = 1× 2× · · · × n, n ∈ N∗, et 0! = 1

and
Ckn =

n!

k!(n− k)!
.

Theorem 1.3. Let a, b ∈ R. For all n ∈ N,

(a+ b)n =
n∑
k=0

Ckna
n−kbk.
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1.3 Set of real numbers R

Proposition 1.4. A number is rational if and only if it admits periodic or finite decimal writing.

Example 1.5. 3
10 = 0, 3, −52 = −2.5, 43 = 1, 3333...

Remark 1.1. If a number is not rational, we say it is irrational.

Definition 1.1 (Set of real numbers). The set of real numbers R is the union of rational
and irrational numbers.

Example 1.6. 2,−9, 4.5, 4
11 ,
√
2, π, e are real numbers

1.3.1 (R,+, ·) is a commutative field

1. The addition (+) in R satisfies the following properties:

1) It is associative:∀a, b, c ∈ R, (a+ b) + c = a+ (b+ c).

2) It has a neutral element 0: ∀a ∈ R, a+ 0 = 0 + a = a.

3) Every real has an opposite:∀a ∈ R,∃b ∈ R : a+ b = b+a = 0, the number b opposite
a is denoted −a.

4) It is commutative:∀a, b ∈ R, a+ b = b+ a.

2. Multiplication (·) in R verifies the following properties:

1) It is associative:∀a, b, c ∈ R, (a · b) · c = a · (b · c).
2) It has a neutral element 1: ∀a ∈ R, a · 1 = 1 · a = a.

3) Every non-zero real has an inverse:∀a ∈ R∗,∃b ∈ R∗ : a · b = b · a = 1, the number b
inverse of a is denoted a−1 or 1/a.

4) It is commutative:∀a, b ∈ R, a · b = b · a.

In addition, we have:

1. Multiplication (·) in R is distributive relative to addition:
∀a, b, c ∈ R, a · (b+ c) = a · b+ a · c.

2. If a · b = 0, then a = 0 or b = 0.

We say that (R,+, ·) is a commutative field.

1.3.2 (R,≤) is totally ordered

Consider on R the relation ≤.
For all a, b, c ∈ R, we have:

1. a ≤ a. (≤ is reflexive).

2. If a ≤ b and b ≤ a, then a = b. (≤ is antisymmetric)

3. If a ≤ b and b ≤ c, then a ≤ c.(≤ is transitive).

In addition we have: ∀a, b ∈ R, a ≤ b or b ≤ a.
We say that (R,≤) is totally ordered.
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Remark 1.2. The operations (+) and (·) on R are compatible with the order relation ≤
in the following sense, for real numbers a, b, c, d :

. If a ≤ b and c ≤ d, then a+ c ≤ b+ d.

. If a ≤ b and c ≥ 0, and a · c ≤ b · c.

. If a ≤ b and c ≤ 0, then a · c ≥ b · c.

1.4 The absolute value

Definition 1.2. Let x ∈ R. We define the absolute value of x as being the positive real
number, denoted |x| given by:

|x| =
{
x, si x ≥ 0,
−x, si x < 0.

Theorem 1.5. Let x, y ∈ R and r ∈ R∗+, we have:
1) |x| ≥ 0, 2) |x| = 0, ssi x = 0,
3) |xy| = |x||y| et | − x| = |x|, 4) |x+ y| ≤ |x|+ |y|,
5)
√
x2 = |x|, 6) ||x| − |y|| ≤ |x+ y|,

7) |y − x| ≤ r, ssi x− r ≤ y ≤ x+ r.

1.5 Intervals

Definition 1.3. An interval of R is a subset I of R satisfying the following property:

Let a, b ∈ I; if a ≤ x ≤ b, then x ∈ I.

Lemma 1.2. Interval R is a set of one of the following forms:
•R = (−∞,+∞) •[a,+∞) = {x ∈ R;x ≥ a} •(a,+∞) = {x ∈ R;x > a}
•(−∞, b] = {x ∈ R;x ≤ b} •(−∞, b) = {x ∈ R;x < b} •[a, b] = {x ∈ R; a ≤ x ≤ b}
•(a, b] = {x ∈ R; a < x ≤ b} •[a, b) = {x ∈ R; a ≤ x < b} •(a, b) = {x ∈ R; a < x < b}
•{a} = [a, a] •(a, a) = φ

1.6 Upper bound, lower bound, least upper bound

Definition 1.4 ( Greatest element or Maximum, Least element or Minimum). Let A be
a non-empty part of R and a real a. We say that a is:.

• the greatest element of A if a ∈ A and ∀x ∈ A, x ≤ a.

• the Least element of A if b ∈ A and ∀x ∈ A, x ≥ b.

If it exists, the greatest element of A is unique. We will denote it by maxA. Similarly, if
it exists, the least element of A is unique and we will denote it by minA.
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Example 1.7.

1. max[a, b] = b,min[a, b] = a.

2. The interval ]a, b[ has neither a greatest element nor a least element.

3. N has a least element 0 but it does not have a greatest element.

Definition 1.5 (Upper bound, lower bound). LetA be a non-empty part of R. A realM is
an upper bound of A if:∀x ∈ A, x ≤M . A real m is a lower bound of A if:∀x ∈ A, x ≥ m.

Example 1.8.

1.
√
2 is an upper bound of ]0, 1[.

2. −1; 0.5, 1.3, 2 are lower bounds of ]3,+∞[, but there is no upper bound.

Definition 1.6 ( Supremum or Least upper bound, Infimum or Greatest lower bound).
Let A be a non-empty part of R.

1. The least upper bound of A is, if it exists, the smallest element of the set of upper
bounds of A. It is denoted by supA.

2. The infimum of A is, if it exists, the greatest element of the set of lower bounds of
A. It is denoted by inf A .

Example 1.9. 1. 2 is the least upper bound of ]0, 2[ or of [0, 2].

2. 3 is the greatest lower bound of [3,+∞[, But there is no supremum.

Lemma 1.3. If a subset A of R has a supremum, then it is unique.

Proof. If a1 and a2 are supremums of A, then a1 is an upper bound of A, hence a2 ≤ a1.
Similarly a1 ≤ a2. Therefore a1 = a2.

Axiom of completeness

1. Every non-empty subset of R that is bounded above has a least upper bound.

2. Similarly: Every non-empty subset of R that is bounded below has a greatest lower
bound

Characterization of the least upper bound

Theorem 1.6. Let A be a non-empty subset of R that is bounded above, and let aa be a real
number. The following two statements are equivalent:

(1) supA = a

(2)
{
∀x ∈ A, x ≤ a, and
∀ε > 0,∃xε ∈ A : a− ε < xε ≤ a.
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Proof.

1. ( =⇒ ) Suppose a is the least upper bound (supremum) of A.By definition, a is an
upper bound of A, which satisfies the first assertion of (2). Let ε > 0 , if a− ε were also
an upper bound of A , we would have a a ≤ a − ε which is false. Since a − ε is not an
upper bound of A, there exists xε ∈ A such that a− ε < xε.

2. ( ⇐= ) Now suppose that (2) is true and show that a is the least upper bound of A. It
is clear that a is an upper bound of A. We need to show that it is the smallest among
the upper bounds of A. Suppose for contradiction that this is not the case. Then there
exists a real number a′ that is an upper bound of A and a′ < a. Therefore:

∀x ∈ A, x ≤ a′ < a.

Let ε = a− a′ > 0. Applying (2), we can assert that there exists an element x ∈ A such
that a − ε < x ≤ a, meaning a′ < x ≤ a. This contradicts the assumption that a′ is an
upper bound of A, there by proving the second implication by contradiction.

Corollary 1.7. Let A be a non-empty subset of R that is bounded below, and let b be a real
number, we have:

inf A = b ⇐⇒
{
∀x ∈ A, x ≥ b, and
∀ε > 0,∃xε ∈ A : b ≤ xε < b+ ε

1.7 Extended Real Line R

Definition 1.7. The extended real line, denoted as R, is obtained by adding two ele-
ments +∞ and −∞ to R.

Notation: The order relation ≤ on R is extended as follows:

∀x ∈ R, x ≤ +∞ and x ≥ −∞.

Remark 1.3. R has a greatest element: +∞, and a least element: −∞.

1.8 Archimedean Property

Theorem 1.8 (Archimedean Property). R satisfies the following property, known as the Archimedean
property:

∀x ∈ R∗+,∀y ∈ R,∃n ∈ N : nx ≥ y.

Proof. (by contradiction): Assume the negation of the statement. That is, suppose there exist
x ∈ R∗+ and y ∈ R such that:

∀n ∈ N : nx < y.

Define the set A = {nx | n ∈ N}. This set is non-empty and bounded above by y. By the
completeness axiom, A has a least upper bound a ∈ R. Specifically:

∀n ∈ N : nx ≤ a,
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which implies
∀n ∈ N : (n+ 1)x ≤ a.

Thus,
∀n ∈ N : nx ≤ a− x.

Since a−x is also an upper bound of A and x > 0, we have a−x < a. Therefore, a is not the
smallest upper bound of A, contradicting the assumption that it is the least upper bound.

1.9 Integer Part

Lemma 1.4. Let x a real. There exists a unique integer p such that:

p ≤ x < p+ 1.

This integer is called the integer part of x, denoted E(x) or [x].

E(x) E(x) + 1

x

Figure 1.1: Integer Part

Example 1.10. E(1.2) = 1, E(−0.6) = −1, E(π) = 3 .

Proof. Let x ∈ R.
Consider the set A = {n ∈ Z | n ≤ x}. To show that the integer part p of x exists, we need

to demonstrate that the set A has a greatest element. We have:
1. A 6= ∅: - If x ≥ 0, then 0 ≤ x and thus 0 ∈ A. - If x < 0, then −x ∈ R∗+. According

to the Archimedean property, there exists n ∈ N such that n · 1 ≥ −x, hence −n ≤ x. Thus,
−n ∈ A.

2. A is bounded above by x: - By the Archimedean property, there exists an integer greater
than x, implying A is an upper-bounded subset of Z.

Remark 1.4. The following inequalities are often useful in exercises:

∀x ∈ R, E(x) ≤ x < E(x) + 1 and x− 1 < E(x) ≤ x.

Definition 1.8. The integer part function E, or [·], maps each real number x to its
corresponding integer p, the integer part of x.

1.10 Density of Q in R

Definition 1.9. A set A in R is dense if:

∀x ∈ R,∀ε > 0,∃a ∈ A : |a− x| ≤ ε.
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Figure 1.2: Integer Part Function

Theorem 1.9. Q is dense in R.

Proof. Let x ∈ R and ε > 0. Consider an integer q > 0 such that 1/q ≤ ε.
Let p = E(qx). Then p ≤ qx < p + 1, implying p/q ≤ x < (p + 1)/q. Let r = p/q; r is

rational.
Since 0 ≤ x− r < 1/q ≤ ε, we have |r − x| ≤ ε.
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