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Avant propos

Ce manuel de cours, intitulé « Systeémes Asservis Numériques », est destiné aux étudiants
en Master électrotechnique et en Master Instrumentation. Les informations contenues dans ce
cours ont été choisies et organisées de la meilleure fagon possible afin d’étre exhaustives tout
en étant également assimilable par I’ensemble des étudiants. Une organisation particuliere a été
mise sur la forme de ce manuel en respectant le canevas officiel de notre tutelle, ce qui permet
d’en faciliter la compréhension.

Ce cours est organisé en quatre chapitres, dans le premier, on présente la modélisation
des signaux et des systemes échantillonnés. En deuxieme chapitre, on traite le phénomene de
stabilité et performances des systemes échantillonnés asservis, le chapitre trois est consacré a
la correction des systemes échantillonnés asservis, et on termine ce cours par le dernier chapitre
ou on va aborder la représentation d’état des systémes a temps discret.
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Chapitre 1

Modélisation des signaux et des systemes
é¢chantillonnés

1.1 INTRODUCTION

Dans la réalité industrielle, la complexité des systémes, ainsi que celle des traitements a
réaliser, nécessite souvent le recours a des outils numériques de traitement : ordinateurs,
calculateurs, systemes numériques en tout genre. De tels outils ne peuvent en aucun cas
s’accommoder de signaux continus ; ceux-ci doivent étre transformés en suites de nombres
pour pouvoir étre traités. De méme, ces systemes délivrent, a leur sortie, des suites de valeurs
numériques, autrement dit, des signaux numériques.

Pour transformer un signal continu en une suite de nombres compatibles avec un systéme
de traitement numérique, on a recours a deux opérations successives : 1’échantillonnage qui
consiste a prélever, a intervalles de temps réguliers, des valeurs discretes du signal, puis, la
conversion analogique numérique qui transforme ces échantillons en nombres, généralement
codés sous forme binaire (Figure 1.1).

L’échantillonnage réalise donc une discrétisation dans le temps, tandis que la conversion
analogique-numérique réalise une discrétisation en amplitude.

elf) e‘{t} conversion &) €y orees €,
——» échantillonnage » analogique ———»
numeérique

Figure.1.1 : Echantillonnage et conversion analogique numérique d’un signal.

1.2 PRINCIPES FONDAMENTAUX DE L’ECHANTILLONNAGE DES SIGNAUX
1.2.1 Peigne de Dirac

L’échantillonnage d’un signal temporel s(#) consiste a transformer celui-ci en une suite
discrete s(nT,) de valeurs prises a des instants n7.. T, est appelée période d’échantillonnage.
Les instants nT, sont appelés les instants d’échantillonnages. Pratiquement, échantillonner un
signal revient a le multiplier par une fonction d’échantillonnage p(z), nulle partout, sauf au
voisinage des instants n7.. Cette fonction, qui porte souvent le nom de peigne de Dirac, est
représentée sur la Figure 1.2.

pln)

T

1
o' 7, 27, nT,

Figure.1.2 : Fonction d’échantillonnage.
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Le résultat d’une opération d’échantillonnage, est représenté sur la Figure 1.3:

s'(1)=p(1)s(7)
(1) 5 (1)

p I [|I|

o' o T, 2T aT,

W

Figure.1.3 : Echantillonnage d’un signal quelconque.

L’échantillonnage d’un signal temporel s(¢) consiste donc a transformer celui-ci en une
suite discrete sk=s(k) de valeurs prises a des instants k7. Ici k et n sont des entiers naturels (k = 0,
1,2, ...n) et T. est appelée période d’échantillonnage :

Soit la suite : 5(0),s(7,),s(2T,),.....s(nT,)
Que I’on note en générale :  S™(7)={S,.5,.5,.....5,}
Ou encore : S(k):{SO,Sl,SZ,...,Sn}

1.2.2 Théoréme de Shannon

Un des objectifs essentiels de 1’échantillonnage consiste a ne pas perdre d’information lors
de la discrétisation dans le temps, ce qui peut se traduire par le fait qu’il doit étre possible, a partir
du spectre du signal échantillonné, de reconstituer simplement celui du signal original. Un simple
coup d’ceil au spectre |S7(f)| nous montre que cela est possible s’il n’existe aucun recouvrement
entre les différents segments de spectre (Figure.1.4).

IS"¢

A

-p 0 BL

Figure.1.4 : Spectre d’un signal échantillonné.

Si 2B est la largeur spectrale du signal s(7), autrement dit sa limite fréquentielle supérieure,
le premier segment décalé, dans le spectre de s (¢), qui se trouve centré sur la fréquence f., s’étend

de f.- B a f.+ B. La condition de non recouvrement est donc, de toute évidence :

B=<f —-B
Soit: f, =2B

Cela constitue le théoreme de Shannon qui peut également s’énoncer de la maniére suivante :
Pour préserver, lors de son échantillonnage, 1’information contenue dans un signal, la

fréquence d’échantillonnage f. doit étre supérieure au double de la largeur spectrale du signal.
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1.3 EXEMPLES DE SIGNAUX ECHANTILLONNES SIMPLES
1.3.1 Impulsion unité

On définit I’impulsion unité échantillonnée par le signal :

5" (1)=11.0.0.....0}

Autrement dit :

8 (nT,)=1 pour n=0
5*(717;):0 pour n#0 et n—oo

La Figure 1.5 propose une représentation schématique de cette impulsion unité.

5
&~
14
il s il ettt % S I
0 T, 2T nT,
Figure.1.5 : Impulsion unité.
1.3.2 Echelon unité
On définit I’échelon unité échantillonné par le signal :
u (1)={L11,...1}
u (k) =1 Vk=0
Autrement dit :
u (k) =0 Vk=<0
La Figure 1.6 propose une représentation schématique de cet échelon unité.
u ()
1t
{ ‘ ‘ [ m=mee [ t‘
0 T, 2T,

Figure.1.6 : Echelon unité.

Cet échelon unité n’est rien d’autre que la somme d’impulsions unités décalées dans le temps :
u' (1)=8" (1)+8 (1=T)+8 (1—2T. )+

(=20 (-7

On pose parfois : & (1=KT,)=0,
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. . . u (=)0
Ce qui nous conduit a la notation : () Z k

1.4 TRANSFORMEE EN Z DES SIGNAUX ECHANTILLONNES
1.4.1 Définition

Soit s(f) un signal continu quelconque que I’on échantillonne a une fréquence f. (soit une
période T.), en respectant, bien évidemment, le théoréme de Shannon.

Ona: s (1) ={50,5:83500s5, }

Ou encore : S(k):{SO’sl’sz"“"Sn}

Cette suite n’est rien d’autre que la somme d’impulsions unités décalées dans le temps et
multipliées, chacune, par le coefficient sx :

s (1)= 5,0 (t)+s15* (t—T6)+s25* (t—2T,)+
Zsk t—kT
:Zskék
k=0

Nous pouvons toujours calculer la transformée de Laplace de s(¢) :
~+00
p ) = Z S A (p
k=0
Dans cette expression, A, (p) représente la transformée de Laplace d’une impulsion unité a

I’instant k7., représentée sur la Figure 1.7.

§(t—kT)
1 ________________ -
|
0 kT

Figure.1.7 : Impulsion unité a I’instant k.

Par définition : A, (p)= j(:w S, (r)e "dt

En appliquant le théoréme du retard et en nommant A, ( p) la transformée de Laplace de
I’impulsion unité : A, (p)=Ay(p)e ™

8 ()= [} 3 o)e

De la méme maniére (en appliquant le théoréme du retard pour A, (p)) :

p)=["6 ()erdr=1 car: & (t)={1,0,0,...,0}
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. A = ¢ P
11 vient alors : k (p )
+00
* _ _ ka;,
D’ou : S (P)—Zske
k=0

En posant z = e”"* , on définit la transformée en z du signal s(f) par :
+00
S(z)=> 52"
k=0
La transformation en z peut étre notée : § (t) —>Z [s (t)]

La transformée en z d’un signal n’existe, bien évidemment, que si la somme qui la définit
converge. On peut montrer que ce domaine de convergence est de la forme |z| > r avec r € R.
Par la suite, nous ne nous intéresserons qu’a des signaux pour lesquels on peut effectivement

définir une transformée en z.

1.4.2 Propriétés de la transformée en z

a) Linéarité

Soit s, (t) ets, (t) , respectivement deux signaux quelconques possédant chacun une
transformée en z, S, (Z) ets, (Z) . La transformée en z d’une combinaison linéaire
As, (t)+ s, (1)de ces deux fonctions est égale A AS, (z)+ 1S, (z).

b) Théoreme du retard

Soit s(f) un signal quelconque possédant une transformée en z, S(z) et soit x(¢) = s(¢ -aT.)
correspondant au méme signal retardé¢ d’un temps a7.

La transformée en z de s(z - aT.) est égalea: X(2)=z"°S (Z)
¢) Théoreme de la valeur finale

Soit s(#) un signal quelconque possédant une transformée en z, S(z). Soit si la suite
échantillonnée correspondant au signal s(¢). Le théoréme de la valeur finale permet de connaitre la
valeur vers laquelle tend la suite sk lorsque kK — +o0, autrement dit lorsque t — +o.

lim 5, =lim[ (1-27)5 ()]

k—+o0

d) Multiplication par le temps
Soit s(¢) un signal quelconque possédant une transformée en z, S(z). Soit x(¢) le signal défini

par x(¢) = t-s(¢). Alors :

X (z)=—T, 4(z)
dz

e) Changement d’échelle

Soit s(f) un signal quelconque possédant une transformée en z, S(z). Soit sx la suite
échantillonnée correspondant au signal s(¢). Soit xx la suite d’échantillons définie par :
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k
x,=a s, avec a#0

Le signal x(¢) correspondant a la suite xx possede une transformée en z telle que :

X(2) =S(ij
a

1.5 FONCTION DE TRANSFERT EN Z
1.5.1 Relations entre échantillons de sortie et échantillons d’entrée : équation récurrente

La modélisation initiale d’un systeme a temps discret conduit souvent a 1’écriture d’une
équation récurrente entre différents termes des séquences d’entrée et de sortie. La forme générale
d’une équation récurrente linéaire peut étre donnée par :

a,s(k+n)+a_s(k+n-1)+..+as(k+1)+ays(k)=b,e(k+m)+b, e(k+m—1)+..+be(k+1)+be(k)

Par hypothése a, #0 et n est appelé ’ordre du systeme. Le systeme est dit causal si les
sorties dépendent uniquement des évenements passé€s. Pour cela il doit obligatoirement vérifier
m<n. Cette formulation de 1’équation récurrente est bien adaptée au calcul numérique. C’est la
forme sous laquelle seront présentés les algorithmes de commande des procédés.

1.5.2 Définition de la fonction de transfert en z

De la méme maniere que 1’on associe a un systeme a temps continu, une fonction de
transfert, par application de la transformation de Laplace a son équation différentielle, on peut
associer a un systeme a temps discret, une fonction de transfert en z, par application de la
transformation en z a son équation récurrente. Sous I’hypotheése que les conditions « initiales »

sont nulles (s(0)=s(1)=...=s(n-1)=¢(0)=e(l)=...=¢(m—1)=0) il vient la relation suivante :

n-1 n _ m-1 m
(a0+alz+...+an71z +a,z )S(z)—(bo+blz+...+bmflz +b,z )E(z)

N(z)
Soit encore : S(z)= D(Z) (Z)
N(z) _6(2)- b, +bz+..+b, 7" +b 7"
Avec : D(z) a,+az+..+a, 7" +a 7"

Qui est définie comme la fonction de transfert en z du systeme. Dans le cas général ou les
conditions initiales sont non nulles la représentation en z du systéme s’écrit plus exactement :

s(e)= 5 p(e)o 21

D(z) "7 D(3)

Ou le polyndme /(z) ne dépend que des conditions initiales. Il influe sur la sortie du systeme
sans modifier le comportement da au signal d’entrée U(z).

La factorisation du numérateur et du dénominateur conduit a la forme poles, zéros, gain
suivante :
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. . . b .
Avec: Do, poles z., | :zéros k=-":gain

el J=leess

Par définition les poles du systeéme sont les racines du polyndme dénominateur et les zéros
du systeme sont les racines du polyndme numérateur. Les uns et les autres sont par défaut des
nombres soit réels soit complexes.

1.6 TRANSFORMEE DE FOURIER A TEMPS DISCRET
1.6.1 Définition

Soit s(f) un signal continu quelconque que 1’on échantillonne a une fréquence f., en
respectant, bien évidemment, le théoreme de Shannon. Soit S(z) sa transformée en z.

Rappelons que : S'(p)= Zn:ske"’”f
k=0

Et que la transformée en z a été obtenue en posant z = e’ :

BRI
k=0

Exactement comme nous pouvons calculer la transformée de Fourier d’un signal a temps

T, =€j(uT 3

continu en posant p = jw, nous pouvons tout autant poser e” ¢ a condition, bien sir, que

la somme, ainsi transformée, converge vers une valeur finie, ce que nous supposerons. On obtient
alors :

S (]a)) = Zn: skefj’”kT"
k=0

- ) -
Ou encore : o(f)=> se >IN
k=0

La fonction 0( f )est appelée transformée de Fourier a temps discret du signal si. Son

module représente, bien siir, le spectre du signal échantillonné.

1.6.2 Exemple

Soit s(r) le signal défini par s(zr)=e' pour t>0. La transformée en z de ce signal,

échantillonné a la fréquence f. a pour expression :

Z
S(z)=—"—+
()=
_ o,
Posons : =€
e’
On obtient : O-(f ) T il _ e

Calculons a présent le spectre du signal :

e joT,

o ()= =

e

T,
e’ —e

- |(cos T, —cosT, )+ j(sin I, +sinT,)
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1
o(f)=
| | \/(cos T, —cosT,)’ +(sin T, +sinT, )’
1
|O-(f)| - \/2—2cos T, cosT,+2sin ol sinT,
1 1
o (/)= =
\/2—2005(a)+1)Te \/2—(2sin2 (a)+1)T6J
2
1 1
o (£)l= =
2 sini(erl)Te 2 sini(zﬂf +1)

Nous pouvons tracer ce spectre, en prenant soin de se souvenir que le signal a
obligatoirement été échantillonné en respectant le théoreme de Shannon, autrement dit en

considérant que le signal original posséde une largeur spectrale B < f, /2.

On tracera donc ce spectre pour 0< f < f, /2

1 S(Zﬂf+1)<z+i

Comme: 2, 2 22
1
o(f)=
Ona: ‘ 2rf +1
25in 7/ +1)
1
Si f. est suffisamment grande, il s’agit d’un spectre qui décroit de ~ O = - 1~ . jusqu’a
2sin —

environ de Y2 (Figure 1.8).

(27 f +1)
21,

T
En réalité, le spectre possede un minimum pour :E , autrement dit pour une

fréquence déja tres élevée et voisine de fo/2.

o)

iy o 172

Figure.1.8 : Spectre du signal.

10



MODELISATION DES SIGNAUX ET DES
CHAPITRE 1 SYSTEMES ECHANTILLONNES

1.7 COMPORTEMENT F REQUENTIEL DES SYSTEMES ECHANTILLONNES
1.7.1 Principes généraux

Considérons un systeme de fonction de transfert en z égale a G(z) sollicité par un signal
d’entrée possédant une transformée en z, E(z) et délivrant un signal de sortie de transformée en z,
S(z) (Figure 1.9).

E
(@) 6@ S(z) .

¥

Figure.1.9 : Schéma général d’un systéme échantillonné.
Le systeme est régi par 1’équation : S(z) = G(z) E(2)
En posant z = ¢’“* , on obtient S (ej“’T" ) = G(e"“’Tf )E(e-’“’Te )
Les termes E (ej e ) et S (ej e )représentent respectivement les transformées de Fourier des

signaux a temps discret d’entrée et de sortie. Par conséquent, G(ej‘”T”) représente le

comportement fréquentiel du systeme : il s’agit de sa fonction de transfert en fréquence.

1.7.2 Exemple

On considere un systeme échantillonné régi par la relation de récurrence :

1

s(k)=5(e(k)+s(k—1))

En appliquant la transformée en z a cette équation, on obtient :

$(2)=5[E(2)+275(2)]

S(z) 0,5

. G(z) =" =
D’ou : (2) E(z) 1-0,5z7"
0,5 0,5
. G = —| = :
Soit : (a)) ‘1—0,5e""Te ‘1—0,5(cosaﬂ;—jsina}T6)
G(a)): 0,5
\/(1—0,5cos T, )’ +0,25sin* T,
0,5
Finalement : G(a)):\/l,25—cosa)Te
0,5 0,5
Ou encore : G(f) -

J1.25-cos 2z fT, \/1 25— cos2z -

e

11
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Il convient de tracer cette fonction pour f variant de 0 a f./2. Sur cet intervalle, cos2zfT. décroit de

1 a-1. G(f) est donc une fonction strictement décroissante.

0,5
O : Gmax:G(O): : =1
nd J0,25
. G, =Gley-__%> 05 1
Et: 27 JL,25—coszm  +J2,25 3

La Figure 1.10 représente le diagramme de gain fréquentiel du systeme.

=

T
r

0 £12
Figure.1.10 : Diagramme de gain du systeme.

Remarque : A contrario des systémes a temps continus, 1’'usage, pour les systémes échantillonnés,
consiste a tracer la courbe de gain directement en coordonnées cartésiennes linéaires.

1.8 RELATIONS ENTRE LES MODELES A TEMPS CONTINU ET A TEMPS DISCRET
1.8.1 Problématique

Considérons un systeme a temps continu modélisé par sa fonction de transfert G(p) (Figure
1.11). Nous possédons une bonne connaissance de ce type de modeles et il est tout a fait 1égitime
de s’interroger sur I’existence d’un systéme échantillonné possédant les mémes caractéristiques,

c’est-a-dire le méme comportement temporel et le méme comportement fréquentiel.

E(p) S() 269) 5(z)
il I

s —» G(z) L

G(p)

Figure.1.11 : Recherche d’une équivalence temps continu — temps discret.

Le systeme échantillonné G(z) sera réputé équivalent au systeme G(p) si, soumis a un signal
d’entrée E(z) correspondant a I’échantillonnage du signal continu e(f) représenté par E(p), il
délivre a sa sortie un signal S(z) correspondant a 1’échantillonnage du signal s(¢) qui aurait été

délivré par le systeme G(p).

12
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1.8.2 Equivalence 2 la dérivation
a) Définition

Une fonction de transfert en temps continu est issue d’une équation différentielle linéaire a
coefficients constants. Cette équation est formée de dérivées successives des signaux d’entrée et
de sortie. Un des moyens les plus simples d’effectuer le lien entre une représentation en temps
continu et en temps discret est de considérer que la variation dx/df en temps continu correspond a
la variation du signal entre deux instants d’échantillonnage :

dx _ x(k)—x(k —1)
dr T,

e

Cette équivalence est d’autant plus vraie que la fréquence d’échantillonnage est grande.
Or la transformée en z de 1’expression de droite est :

Z[x(k)_x(k_l)]:%X(z)(l—z1)

T

e e
De méme, le terme dx/ df a pour transformée de Laplace : pX(@).
Par conséquent, 1’équivalence naturelle entre une fonction de transfert continue en p et sa fonction
de transfert échantillonnée en z est :
1-z!
T

e
Remarque : La connaissance précise de la fréquence d’échantillonnage est nécessaire pour
disposer de cette équivalence.

p <>

b) Exemple

Soit un systeme a temps continu du premier ordre de fonction de transfert en boucle ouverte
G(p) définie par :

K
G =
(p) 1+7p
Effectuons la transformation proposée :
K K
G(Z): 1_2_1 :1 T T »
+———z
1+ T( T j T T

Comparons a présent les courbes de réponse fréquentielle de ces deux systemes.
A titre exceptionnel, nous tracerons le gain fréquentiel du systeéme a temps continu G(p), non pas
sur un diagramme de Bode, mais sur un diagramme a coordonnées cartésiennes linéaires afin de

pouvoir comparer directement les deux courbes.
Pour le modele a temps continu, on a :
K
G(@)=|G ()=

VI+ T’
Tragons cette courbe en pointillés sur la Figure 1.12. Rappelons qu’une inflexion se produit a la

fréquence f= 1/2nT et notons, par ailleurs, que :
G(0)=K

13
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G(LJZL
2) 1+4z2°T2f?

Pour le modele a temps discret, on a :

G(w)= - -
1+ - ' T
+ 1+— |cos T
K
Notons que : T 1+ 2Tf

(Cette valeur est nettement supérieure a celle fournie par le modele a temps continu)

K
Et que : G(0)= =K

™Y (TtY or(. T
I+— |+ = | — | 1+—

(Cette valeur est identique a celle fournie par le modele a temps continu).

Tracons (en trait plein) la courbe représentative du gain du systeme a temps discret sur la
méme figure.

La conclusion est évidente : les deux courbes coincident aux basses fréquences mais
I’équivalence proposée devient de moins en moins précise au fur et a mesure ou I’on se rapproche

de f./2.
Remarque : Rappelons que la courbe de réponse d’un systeéme a temps discret n’a de sens que sur

I’intervalle [O, ];e }

systéme & temps
discret

sysieme A femps
continu

0 12

Figure.1.12 : Comparaison des deux modeles.

1.8.3 Equivalence a I’intégration

a) Définition
L’équivalence a I’intégration, appelée également transformation bilinéaire propose une
correspondance plus précise que I’équivalence a la dérivation. Nous mentionnons ici cette
2(1-2")

équivalence sans la justifier : p>—=

14
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b) Exemple

Reprenons notre systeme a temps continu du premier ordre de fonction de transfert en
boucle ouverte G(p) définie par :

G(p):1+KTp
Effectuons la transformation proposée :
K K(l-l—zfl)
G(z)= —— =
IR
r.(+2") e

1 -1

- 6(2)- K(1+z7) B K(1+z7)

<1+Z_1)+2TT(1—Z_1) 1+2TT+(1_§’T)Z_I

e e

Remarque : La connaissance précise de la fréquence d’échantillonnage est toujours nécessaire
pour disposer de cette équivalence.

1.8.4 Equivalence modale

Dans I’esprit de conformité entre les réponses impulsionnelles en temps continu et en temps
discret, on peut proposer une approche modale de 1’équivalence entre fonction de transfert en
temps continu et en temps discret. Cette équivalence est basée sur la concordance des poles entre
les deux fonctions. On utilise alors la transformation :

T
p—p, >z—e’
Toutefois, ce type d’équivalence possede I’inconvénient de ne traiter que des pdles des
fonctions. Il est souvent nécessaire d’ajuster leurs numérateurs en fonction de criteres particuliers.
Les expressions fournies en annexe B correspondent a des fonctions de transfert que I’on a
systématiquement adaptées pour que leurs gains statiques concordent.

1 1 )1-e?"
Ainsi : G(p)=—— < G(»)= [——]Lﬂ
P—D; p)z—e’"
_,nT,
, GO =——— & Guy=-|L|=¢
De sorte que : 0-p, p )1- el

1.8.5 Equivalence d’une association de plusieurs systémes

On ne peut déterminer 1’équivalent G(z) d’un systeme de fonction de transfert en temps
continu G(p) que si ses signaux d’entrée et de sortie sont échantillonnés (Figure 1.13).

T )~ G

L4 [

Figure.1.13 : Principe de I’équivalence Laplace — Z.
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Par conséquent, il est impossible, lorsque deux systemes sont associés en cascade
(Figure.1.14) de calculer I’équivalent de la fonction de transfert globale Go(p)= G1(p)G2(p) par la
multiplication pure et simple de G1(z)G2(z). En effet, en cherchant I’équivalent Go(z) de Go(p), on
suppose implicitement que seuls les signaux d’entrée et de sortie de Go sont échantillonnés. Et
lorsque 1’on écrit G1(z)G2(z), on suppose que le signal sortant de G et entrant dans G» est lui aussi

échantillonné, sinon, on ne pourrait trouver ces deux équivalents.

_,;’ G(p)— Gz} —f; — Gip)— Gylz) —f;—-

£

Figure.1.14 : Principe de I’équivalence Laplace — Z pour une association en cascade.

En conclusion, on ne peut pas déterminer 1’équivalent en z d’une association de plusieurs
systtmes en multipliant les deux fonctions de transfert en temps continu, puis en cherchant
I’équivalent de la fonction globale ; il faut impérativement calculer d’abord les fonctions de
transfert en z de chaque systeme, puis multiplier ces fonctions de transfert en z pour obtenir la

fonction de transfert échantillonnée de 1’ensemble.

16



Chapitre 2

Stabilité et performances des systemes
échantillonnés asservis

2.1 MISE EN EQUATION DES ASSERVISSEMENTS ECHANTILLONNES
2.1.1 Fonction de transfert en boucle fermée

Tout comme les systeémes continus, les systeémes échantillonnés peuvent €tre asservis

selon le méme principe de la boucle fermée (Figure 2.1).

Elz) &(z} chaine directs S5z}
, A=) L
consigne sottie
{grandeur a
réguler)
chaine de retour |

5iz) B(z}

Figure.2.1 : Schéma général d’un systeme échantillonné asservi.

La chaine directe et la chaine de retour sont modélisées par leurs fonctions de

transfert en z et les signaux d’entrée et de sortie sont bien évidemment échantillonnés a une
fréquence f. et possédent chacun une transformée en z : E(z) et S(z). L’écart & (¢) n’échappe
pas a la régle. Soit&(z) sa transformée en z.

Tout comme dans le cas des systémes a temps continu, on définit les fonctions de

transfert en boucle ouverte G(z) et en boucle fermée H(z) par :

(o)t

Bt I a(z)B(2)

Dans le cas d’une boucle a retour unitaire, on a B(z) = 1 et, par conséquent :

6(2)=A()
Soit : H(z)= 1+GC(;Z()z)

17
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2.1.2 Relation temps continu — temps discret en boucle fermée

Considérons un systeéme a temps continu asservi, selon le schéma général de la Figure 2.2.

E(p) &(p) chaine directe S(p)
——— A(p) "
consigne sortie

{grandeur &
réguler)
- chaine de retour .
) B(p)

Figure.2.2 : Schéma général d’un systéme a temps continu asservi

Chacun des sous-systemes constitutifs A(p) et B(p) possede un équivalent en temps
discret A(z) et B(z), comme cela a été étudié au chapitre précédent. Ces équivalents supposent

que chacun de ces sous-systemes possedent une entrée et une sortie échantillonnées (Figure
2.3).

—f’;:—r Alp) = A(z) —";'—Ir

L4 e

Figure.2.3 : Conditions d’équivalence Laplace — Z

Si on se contentait, dans le schéma de la Figure 2.2, d’échantillonner uniquement le
signal de consigne et le signal de sortie, on obtiendrait le schéma de la figure 2.4, mais, dans
cette configuration, le systeme obtenu serait completement différent de celui auquel on
s’attend et qui est représenté sur la figure 2.5. En effet, il n’est pas possible de déterminer
I’équivalent A(z) de A(p) si son signal d’entrée n’est pas échantillonné. Il est donc nécessaire
de disposer d’un mod¢le dans lequel chaque signal est échantillonné.

sortie
—-":: — | chaine directe ~ —»
- T

chaine de retour f«

—— Hp) - i [ —

Figure.2.4 : Echantillonnage de la consigne et de la sortie
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La principale conséquence de cette constatation est le mode de calcul de la fonction de
transfert en boucle fermée d’un systéme asservi a temps discret lorsque celui-ci est déterminé
a partir d’un modele a temps continu : il n’est pas possible de déterminer la fonction de
transfert en z en boucle fermée a partir de 1’équivalence de la fonction de transfert en boucle
fermée en temps continue H(p). Il faut déterminer indépendamment les fonctions de transfert
en z de chaque sous-systeme (figure 2.5) et calculer la fonction de transfert en boucle fermée
H(z) a partir de I’expression :

A(z

A
=0

E(z) &(z) chaine directe 5(z)
, A(z) T
consigne sortie
{grandeur a
réguler)
chaine de retour

S(z) B(z)

Figure.2.5 : Schéma de I’asservissement échantillonné attendu

2.2 STABILITE DES ASSERVISSEMENTS ECHANTILLONNES
2.2.1 Critere mathématique de stabilité
a) Enoncé du critére

Pour les systemes a temps discret, la définition de la stabilité reste la méme : a une
entrée finie doit correspondre une sortie finie. Considérons un systeéme échantillonné défini
par la fonction de transfert suivante :

4
-1
_ _ _, a | |(l—z.z )
ay+az +a, 7 a7t ’

H(:)- -

1+bz " +b,z7 +..+b 7" 4
! H(l—pjz )
jl
Les z; et les p; sont respectivement les zéros et les pdles de la fonction de transfert.

Plagons un échelon unité a I’entrée de ce systéme, soit : E(z)= 1
7

On a alors :

D’apres le théoreme de la valeur finale, on a :

lim s(k) =lim

k—+o0 71

{Z_l (Z)}hm M

Z
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Or le systeme sera stable si et seulement si s(k) tend vers une valeur finie.
La fonction de transfert peut naturellement étre décomposée en éléments simples :
.
H(z)=2 77—~
P
b4

Et il faudra qu’aucun de ces termes ne tende vers I’infini lorsque z — 1 pour assurer la
stabilité¢ du systéme. On sait par ailleurs que le domaine de convergence (donc d’existence) de
la transformée en z est tel que |z| > r. Pour faire tendre z vers 1, il faut bien évidemment que
le seuil de convergence r soit inférieur a 1. Le seul moyen de garantir qu’aucun terme de la
décomposition en éléments simples ne diverge lorsque z tend vers 1 est donc de n’avoir que
des pdles pj dont le module sera strictement inférieur a 1.

Généralisons donc ce résultat :

Un systeme échantillonné est stable si et seulement si tous les poles p; de sa fonction de
transfert sont tels que |pj| < 1. On traduit souvent cette propriété par la proposition suivante
qui concerne la position des pdles dans le plan complexe :

Un systeme est stable si et seulement si les pOles de sa fonction de transfert se trouvent
tous a I’intérieur du cercle de rayon 1.

b) Exemple : stabilité en boucle fermée d’un systéme du premier ordre

On considere un systeme échantillonné de fonction de transfert en boucle ouverte G(z)
placé dans une boucle a retour unitaire (Figure 2.6), avec :

l-az” z-a
Les parametres b et a sont positifs. De plus, on supposera que a < 1.

Ce systeme correspond, en boucle ouverte, a 1’équation de récurrence suivante :

s(k) :be(k)+as(k—1)

Ei(z) £(z)

=
L]
o

Giz)

L

Figure.2.6 : Schéma d’un asservissement échantillonné a retour unitaire

Etudions sa stabilité en boucle fermée :

Le systeme est stable en boucle fermée si I’'unique pole de cette fonction de transfert est
a
b+1

<1

inférieura 1 :
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2.2.2 Critere algébrique de Jury

Pour les systeémes échantillonnés d’ordre €levé ou possédant des parameétres variables,
on peut montrer qu’il est impossible d’utiliser le critére mathématique, et c’est pour cela
qu’un critere algébrique, dit de Jury, avait été introduit. Le critere de Jury permet de
diagnostiquer la stabilit¢ d’un systéme sans avoir a calculer ses pdles. Il ressemble beaucoup
au critere de Routh et est aussi simple a utiliser.

a) Enoncé du critere

Soit H(z) la fonction de transfert en boucle fermée d’un systeme échantillonné asservi :

H(z)

En multipliant le dénominateur de cette fonction de transfert par zq, on obtient :

-1 -2 -p
LG ta 7 a7 +ta,z

- -1 -2 —q
by+bz +bz " +..4+bz

H(z)- z (ao +a,7" +a,77 -|-...+apz“’) ~ N(z)
= byz! +b2 " +b,2 +.tb,  D(2)

Remarque : 11 faut s’arranger pour que by soit positif.

A partir de I’expression D(z) du dénominateur de H(z), ainsi placé sous la forme d’un
polyndme en z, on construit un tableau similaire a celui du critere de Routh, de la maniére
suivante

On place toute la suite de coefficients b; dans un tableau, sur une premiere ligne, dans
I’ordre des puissances de z décroissantes, puis, sur une deuxieme ligne, on place les mémes
coefficients mais en sens inverse. On effectue ensuite un calcul pour créer une ligne
supplémentaire de ¢ - 1 valeurs ¢, avec :

¢;=bb; =bb,.;

On dispose alors d’un tableau de trois lignes et on crée aussitdt une quatrieme ligne
avec la méme suite de coefficients c;, mais placée en sens inverse :

by b b b,
b, by b e b,
Cb € C e €,
Cot Cpa Cps o weveveeennne Co

La cinquieme ligne est calculée a partir des deux lignes précédentes et cette fois, on
calcule uniquement g - 2 valeurs d j selon I’expression :

d;=cc;—c, ¢

q-17q-j-1

Plutot que de retenir cette expression, il est préférable de visualiser 1’opération qui est
faite, sur le tableau (figure 2.7).
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X

@ e € . @ e Caa €y
- G2 & -
-

'ﬂr[) 'd] d] dq—l

Figure.2.7 : Construction de la table de Jury

I
=
=

Une sixieme ligne est automatiquement ajoutée au tableau en disposant les coefficients
dj en sens inverse. On itére le processus de calcul jusqu’a ce qu’il ne reste que 3 termes sur
une ligne (bien noter qu’a chaque série de calculs, on crée un terme de moins qu’il n’y en a
sur les deux lignes précédentes). Le tableau définitif doit comporter 2¢g - 3 lignes. Le systeme
est stable si toutes les conditions suivantes sont réunies simultanément :

D(1)>0

D(—l) =0 si n est impair,D(—l)—< 0 si n est pair
by - |b,|

|co| > |cq71|

|d,| >~ |dq_2|

|x0| > |x2|

Remarque : 11 faut donc, en plus des conditions sur D(1) et D(-1), que sur chaque ligne créée
de rang impair, la valeur absolue du premier terme soit inférieure a celle du dernier.

b) Exemple : stabilité d’un systéme du second ordre
Soit H(z) la fonction de transfert en boucle fermée d’un systéme échantillonné asservi.

Soit : H(z)z 1 :N(Z)
az’ +bz+c  D(z)

Les coefficients a, b et ¢ sont supposés strictement positifs. Comme le systeme est
d’ordre 2, une seule ligne suffit (2¢ - 3 = 1). Le tableau se limite donc a la liste des
coefficients dans I’ordre des puissances décroissantes :

a b c

L’analyse de la table nous conduit immédiatement a la condition : a > c.
Par ailleurs, on doit avoir :

D(1)>0=a+b+c>0
D(-1)>0=a-b+c>0

En conclusion, le systeme est stable si :

a>c
a+b+c>0
a—-b+c>0
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2.2.3 Influence de la fréquence d’échantillonnage sur la stabilité
a) Mise en évidence

Nous allons tenter, a partir d’'un exemple simple, de montrer que la stabilit¢ d’un
systtme échantillonné peut étre grandement influencée par le choix de la période
d’échantillonnage. Considérons un systeme de fonction de transfert en boucle ouverte G(p)
placé dans une boucle a retour unitaire avec :

K

G(p):1+Tp

Si on se réfere a la table des équivalents Laplace — z (fournie en annexe B), le systeme

échantillonné asservi qui possédera le méme fonctionnement aura pour fonction de transfert :

G(Z)M:H(z) G(z) _ K(l_e?)

L 1+G(z e =
z—e <) z—e T+K|l-e "

Remarque : Bien noter que 1’on n’a pas le droit de déduire la fonction de transfert
échantillonnée en boucle fermée a partir de la fonction de transfert continue en boucle fermée.

Alors que le systeme en temps continu H(p) est toujours stable, le systeme échantillonné
ne I’est pas toujours. En effet, H(z) possede un pdle dont le module est susceptible d’étre
supérieur a 1.

L. L
Ce péle a pour expression : p, = K (e T —lj +e T
Le systeme échantillonné sera stable si et seulement si :
L L
Kle? -1|+e T|<1
On peut donc avoir :
T L
Kie” -1|+e? <1=>K>-1

Ce qui ne nous intéresse guere,

T(’

, T,

- l+e T

_ T rTe

Ou bien - K (1+K)e <1I=> K< -
l+e T

Le systeme échantillonné peut donc étre instable : pour une période d’échantillonnage
donnée, il existe une limite supérieure du gain statique qui délimite le domaine stable. Si ¢’est
le gain statique qui est fixé, on a:

T, I
K—(1+K)e " <1=>—(1+K)e " <1-K

T, _ _ _
eT>1 K:>—T‘)>ln1 K:>7:)<Tln1 K
1+ K T 1+ K ' 1+ K

23



STABILITE ET PERFORMANCES DES SYSTEMES
CHAPITRE 2 ECHANTILLONNES ASSERVIS

La période d’échantillonnage doit donc étre inférieure a une valeur qui dépend des parametres
du systéme. Autrement dit la fréquence d’échantillonnage doit étre supérieure a un certain
seuil.

Remarque : 11 s’agit 1a d’un résultat important : en automatique, la fréquence
d’échantillonnage n’est pas uniquement dictée par le théoréme de Shannon (d’ailleurs il n’est
pas toujours possible de connaitre a priori les spectres des signaux dans le systeéme) mais
aussi par les caractéristiques du systeéme.

b) Choix de la fréquence d’échantillonnage

La regle traditionnellement adoptée par les automaticiens, en maticre de choix de la
fréquence d’échantillonnage consiste a évaluer la bande passante f,qs du systéme asservi et de
choisir une fréquence d’échantillonnage telle que :

6fpas = fe = 25fpas

On rappelle que la bande passante est définie comme la limite supérieure de la plage de
fréquences pour lesquelles le gain est constant a 3 dB pres.

2.3 ASSERVISSEMENTS CONTINUS COMMANDES OU CORRIGES EN TEMPS DISCRET
2.3.1 Définition

Les systemes asservis comportent assez souvent a la fois des éléments fonctionnant a
temps discret et d’autres qui fonctionnent a temps continu. Parmi ces systémes, on rencontre
notamment des asservissements de systemes continus pour lesquels on envisage une
correction par calculateur. Dans ce cas, les signaux de consignes et de sortie sont continus ;
seuls les signaux entrants et sortant du correcteur sont échantillonnés (Figure 2.8).

Ep) Sip)
T —» =) —f?—l- A(p) »
B(p) “

Figure.2.8 : Asservissement continu avec correction numérique

Dans d’autres cas, ’asservissement complet d’un systéme continu est piloté par un
signal échantillonné (Figure 2.9).

E() S(p)
—  (2) —  A(p) >

F 3

—
-+ T B(p)

Figure.2.9 : Asservissement continu commandé par un signal échantillonné
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2.3.2 Interfacage entre un systéme discret et un systeme continu

Un probleme subsiste dans les deux cas que nous venons de mentionner : la connexion
d’un systeéme échantillonné vers un systéme a temps continu n’est a priori pas possible. En
effet, le signal délivré par le systtme C(z) est un signal identique a celui présenté sur la
Figure.2.10. Il s’agit méme, en général, d’une suite de nombres délivrés sous forme binaire.
Ce type de signal est bien siir incompatible avec 1’entrée d’un systéme a temps continu.

Pour retrouver un signal « admissible », il est nécessaire de reconvertir la suite
numérique en impulsions discrétes, au moyen d’un convertisseur numérique analogique, puis
(et c’est cela qui transforme véritablement le signal en temps discret en signal continu) de
procéder a un blocage du signal grace a un systeme appelé bloqueur.

\

Le blocage consiste a maintenir la valeur de 1’échantillon jusqu’a Darrivée de
I’échantillon suivant. Le signal x*(f), apres blocage, devient le signal continu représenté sur la

figure 2.11.
x (1) o)
e L] I o O
o' T, 27, nT, ’ o T, 27, nT, ’
Fig. 2.10: Signal issu du correcteur Fig. 2.11: Signal continu obtenu apres blocage

On admettra qu'un bloqueur d’ordre 0 peut étre modélisé par une fonction de transfert
en temps continu égale a :

1- e*PTe

P

o(p)

2.3.3 Premiére méthode d’étude simple : recherche d’un systéme continu équivalent

La premiere méthode d’étude du systeme consiste a rechercher le systéme continu
auquel il est équivalent. Prenons I’exemple du systeme représenté sur la figure 2.8. Le
correcteur C(z) possede sans aucun doute un équivalent en temps continu, soit C(p).

E(p) Sip)
Clp) By(p) A(p) >

vy

&

B(p)

Figure.2.12 : Equivalence en temps continu du systéme

Nous pouvons alors proposer un schéma équivalent en continu, en veillant a ne pas
oublier le bloqueur d’ordre 0 qui, dans le mod¢ele en temps continu, effectue I’interfacage
entre le correcteur et le syst¢tme a commander (figure 2.12).
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2.3.4 Deuxiéme méthode d’étude simple : recherche d’un systeme discret équivalent

On peut également étudier le systeme en recherchant le systeme a temps discret auquel
il est équivalent. Reprenons 1’exemple du systéme représenté sur la figure 2.8. Soit A(z) et
B(z) les équivalents en temps discrets des fonctions de transfert A(p) et B(p).

Nous pouvons immédiatement proposer le schéma équivalent en temps continu (figure
2.13), en veillant, surtout, a ne pas y inclure le bloqueur d’ordre 0 qui, dans le modele en
temps discret, n’a aucune raison d’étre.

E(z) 3(z)
—)— ) Al2) .

F

B{z)

Figure.2.13 : Equivalence en temps discret du systéme

2.4 PRECISION DES ASSERVISSEMENTS ECHANTILLONNES
2.4.1 Erreurs de position et de vitesse

On définit, pour les systemes a temps discret, les mémes performances que pour les
systemes a temps continu. Il en est ainsi de la précision des systemes qui est ici, toujours
définie par les notions d’erreurs de position et de vitesse.

Considérons un systeme échantillonné asservi de fonction de transfert en boucle ouverte
G(2), placé dans une boucle a retour unitaire et représenté sur la figure 2.14.

E(z) §(z) o) 5(2)

Figure.2.14 : Schéma d’un asservissement échantillonné a retour unitaire
On définit ’erreur de positioné, par : ¢, = lim g(k) , pour une entrée en échelon unité
k—+o0

En appliquant le théoreme de la valeur finale, on obtient :

o ][t

Or: ¢(2)=E(2)-8(2)=E(2)-G(2)¢(z) von. 2= E(z)
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¢ ~lim (Z_—ljﬂ

On a donc : Pl 1+G(Z)

Comme le signal d’entrée est un échelon unité, on a :

2 . 1
E(z)=—% ~ lim| ———
G=5 = = ZIEIIL+G(Z):|

On définit également I’erreur de vitesse ¢, par: ¢, = lim g(k) pour une entrée en rampe

k—+0
-1\ E
On a toujours : £, =lim (%)%

Avec cette fois :

E(z)=—"+ = ¢ =lim L.

(e-1) A (z=)[1+6(2)]

2.4.2 Précision d’un systeme échantillonné du premier ordre

On considere un systeme échantillonné de fonction de transfert en boucle ouverte G(z)
placé dans une boucle a retour unitaire (figure 2.13), avec :

G(z)z - :ﬂ avec b>0 e 0<a<l
l-az Z—a

Nous savons déja (paragraphe 2.2.1 — b) que le systéme est stable en boucle fermée si
I’unique pole de la fonction de transfert en boucle fermée est inférieur a 1.

a
Soit : —=<1
b+1

a) Calcul de ’erreur de position

L’erreur de position de ce systéme asservi a pour expression :

e =lim| — 1 |=fim| %% |- 1-4
Soit : P 1+ bz 2ol (b+1)z—a b+1-a

Z—a

Remarque : Compte tenu de la condition de stabilité, le dénominateur de cette
expression ne peut étre nul.

Cette erreur de position est nulle, autrement dit le systeme est parfaitement précis en
boucle fermée, si a = 1, donc si la fonction de transfert en boucle ouverte G(z) possede un
pole égale a 1.
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b) Calcul de ’erreur de vitesse
L’erreur de vitesse du systéme asservi a pour expression :

. T
& =1 e bz
) ~1)+|1
)1+ |
& =lim T.(2-a) o

Soit : Vsl (Z—l)[z(1+b)—a] ~

L’erreur de vitesse d’un systéme du premier ordre placé dans une boucle d’asservissement est
donc infini, sauf si a = 1, auquel cas :
T.(z-1) T,

&=l (z-1)[z(1+5)-1] b

¢) Généralisation

La présence d’un pole égal a 1 dans la fonction de transfert en boucle ouverte assure
donc une bonne précision statique mais n’assure pas une bonne précision dynamique.
Considérons a présent un systeme de fonction de transfert en boucle ouverte G(z) quelconque
de la forme :

1

6(s)=—— A(2)
==

Un tel systeme possede n pOles égaux a 1. On aussi dit que la fonction de transfert en

boucle ouverte est constituée, notamment, de n intégrateurs, étant donné que la forme ——
-z

N C e TP .1
correspond a une constante multiplicative pres a I’intégration — .

P
L’erreur de position de ce systeme en boucle fermée a pour expression :

1
¢, =lim| ———=lim| —————|=1i
p 21%1|:1+G(Z):| zlal 1+ﬂ Zlir‘l (z—l)n+ZnA(Z)

(=)

Quelle que soit la valeur de n supérieure ou égale a1 : &, =0.

La présence d’au moins un intégrateur dans la fonction de transfert en boucle ouverte
assure donc bien la nullité de I’erreur statique.

L’erreur de vitesse du systeme en boucle fermée a pour expression :

) T,

g, =lim

ol (z—l)[llG(z)]

lim (z—1)+7(Z_I)A(Z)

(1—1’1 )n

71
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n n—1
Soit : &, =lim TE(Z—nl) =lim Te(nZ—l)
' (=01 + @) || | [(z-1) +2a(2)]
T T
Si =1: & =lim € =—-=0
Lo et h(z_l)ﬂm(z)ﬂ A1)

n-1
Si n22 gvzlim E(Z_l) — T; lim(z_l)n—l =O

21 [(Z—l)n +ZnA(Z)} A(l) 2ol

En conclusion, la présence d’un intégrateur dans la fonction de transfert en boucle

ouverte assure une erreur de vitesse finie d’autant plus faible que la période d’échantillonnage
est faible. La présence d’au moins deux intégrateurs assure la nullité¢ de 1’erreur de vitesse.

2.5 PERFORMANCES DYNAMIQUES D’UN SYSTEME ECHANTILLONNE

Tout comme 1’étude des systémes a temps continu conduit a mettre en évidence des
performances en boucle fermée telles que rapidité et limitation du dépassement, nous allons a
présent nous intéresser a ces performances dynamiques dans le cas des systemes a temps
discret.

2.5.1 Fonction de transfert échantillonnée équivalente a un systéme du second ordre

On considere un systtme a temps continu du second ordre, caractéris€é en boucle
ouverte, par une fonction de transfert G(p) telle que :

K
G(p)=——7—
L
a)}‘l a)l’l

Nous nous limiterons a 1’étude du cas j < 1, pour mettre en évidence les parametres liés
au temps de montée et au dépassement. Par ailleurs, nous savons déja, que cette fonction
possede dans ce cas deux poOles complexes conjugués :

plz_a)n[g-j (1—52)} et p2=—wn[§+j (1—52)}

2
G(p)-— K@ Kap ! 1

(p=p)(p-p) " (p-p) (P-p)

Soit :

Calculons a présent, a ’aide de la table d’équivalence fournie en annexe B, la fonction de
transfert en z équivalente a G(p) :

6(6)kar [~ 1= ][ e
"L Pz py)z—e""

bP, = a’f

Comme :
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K(l—e”‘Tf)(l—e”sz)
(Z_eplﬂ)<z_epzﬁ)

Notons au passage que les deux pdles de la fonction de transfert en z sont e”™et e

On obtient : G(Z) -

T,

et remplagcons pour finir p; et p2 par leurs expressions :

K (1 +e 2l D7 cog o T \1-& 2 )

G(Z) = 2 ~¢o,T, 2 2éw,T,
7" =2ze " coso, T \1-& +e

2.5.2 Prévision des performances dynamiques
a) Principe

L’une des méthodes les plus simples consiste a rechercher 1’équivalent en temps continu
de la boucle d’asservissement en temps discret en prenant soin de ne pas oublier les bloqueurs
d’ordre 0, si nécessaires. On évalue alors les performances dynamiques de ce systéme en
temps continu en assimilant son fonctionnement a celui d’un systéme du second ordre.

Pour simplifier les calculs, on prend 1’habitude d’effectuer une approximation sur la
fonction de transfert du bloqueur d’ordre 0, approximation qui apparait comme raisonnable si
la fréquence d’échantillonnage est suffisamment élevée :

b) Exemple

On considere le systeme échantillonné asservi représenté sur la figure 12.15 et soumis a
un échelon unitaire ; la période d’échantillonnage est réglée sur 7. = 0,2 s.

E() )

—» —»  Alp) >

Figure.2.15 : Asservissement continu commandé par un signal échantillonné

On donne : A(p)=%
p

Recherchons 1’équivalent en temps continu de cette boucle d’asservissement en temps discret:
un bloqueur d’ordre 0 est nécessaire pour assurer la commande du systéme A(p). On obtient

alors le schéma équivalent de la figure 2.16.
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La fonction de transfert en boucle ouverte de ce systeéme en temps continu a pour expression :

4 ~ 4

1+Tezpj(1+ p) : (1+1%j(1+ p)

G(p):(

E(p) S(p)
Bip) = Alp) »

Figure.12.16 : Equivalence du systéme en temps continu

Calculons la pulsation de coupure a 0 dB et la marge de phase de ce systeme :

6(0)- 10 _
Ji+o? f1+2
+o +IOO
2 4 2
G(a)):1<:>(1+a)2)[1+a)—j:16<:>w—+101w ~15=0
100 100 100

La seule solution réelle positive de cette équation est:  @,, =3,6rad/s

Par conséquent, en considérant les relations approchées a propos des performances des
systemes a temps continu, nous pouvons en déduire une estimation du temps de montée en
boucle fermée :

3
t, ~—~=0,8s

a)co

Calculons a présent la marge de phase :

%)
Ap=r+¢(w,,)=r—arctan I_COO —arctan @,

Soit . Ap=85" =&, ~0,85

Ce coefficient d’amortissement en boucle fermée correspond a un dépassement de
0,6%, autrement dit, le systeme devrait présenter un dépassement imperceptible.
En conclusion, nous considérerons que le systtme échantillonné initial possede pour
performances dynamiques :
t, ~0,8s

dep =0
Cette étude a par ailleurs permis de démontrer que le dispositif était caractérisé par une

marge de phase relativement importante, montrant ainsi que le systeme est trés stable en
boucle fermée.
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¢) Validation des résultats obtenus

Considérons, pour valider les résultats obtenus précédemment, 1’équivalent en z de la
boucle d’asservissement étudiée (figure 2.17).

D’apres la table d’équivalence :

4(1-e"
4a)= ((—))
EG) » Stz

Figure.12.17 : Mod¢le a temps discret de la boucle d’asservissement

La fonction de transfert en boucle fermée a pour expression :
A(z) 41-e")

LTV TE R P v

Soit : H(Z) 0721
Or: iZ)) (Z—O,l)S(Z)=O,72E(Z)
Soit : ( 01)S() 0,72E(z)

Ce qui correspond a I’équation de récurrence suivante :
s(k) = 0,1s(k —1)+O,72€(k —1)

Le systeme étant commandé par un échelon, la suite e(k) est connue et cette équation nous
permet de calculer, échantillon par échantillon, les différentes valeurs de la suite s(k) (tab.2.1).

t 0 0,2s 0,4s 0,6s 0,6s 1,0s 1,2s
e(k) 1 1 1 1 1 1 1
s(k) 0 0,720 | 0,792 | 0,799 | 0,800 | 0,800 | 0,800

Tableau.2.1 : Simulation de la suite d’échantillons

N

Nous y remarquons 1’absence de dépassement perceptible (ce qui est tout a fait
conforme au systeme continu équivalent) et pouvons y mesurer le temps de montée qui est
tout a fait conforme aux prédictions calculées a partir de notre modele. Nous pouvons
également vérifier la valeur de I’erreur de position prévue par notre modele :

1 ) 7—e
£, =lim =lim " -
—>11+A( ) 21 Z_e*e+4(1_e*e)
Soit : £ = 120,82 =0,2=20%

T 1-0,82+4(1-0,82)
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Chapitre 3

Correction des systemes échantillonnés
asservis

3.1 PRINCIPES GENERAUX

3.1.1 Rappel du cahier des charges d’un asservissement

Les systemes échantillonnés comme les systeémes a temps continu, doivent en général
satisfaire a un cahier des charges qui impose, en boucle fermée, un certain nombre de
performances (qui d’ailleurs sont les mémes qu’en temps continu) : précision, rapidité, marge
de stabilité et limitation du dépassement.

3.1.2 Role du correcteur

Si I’on s’en tenait 13, nous ne pourrions malheureusement que prédire et constater les
performances (ou les contre-performances) de la boucle d’asservissement sans pouvoir agir
sur celles-ci. Il y a peu de chance, alors, que le cahier des charges soit respecté. L’idée
consiste, ici encore, a introduire dans la chaine directe, en amont du systtme A(z), un
dispositif supplémentaire de fonction de transfert C(z), appelé correcteur numérique et dont le
role essentiel doit consister a modifier les performances du systeme initial (figure 13.2). Cela
revient a dire que nous transformons les fonctions de transfert en boucle ouverte et en boucle
fermée de maniere a imposer a I’ensemble de fonctionner selon le cahier des charges voulu.

E(z) _ &) correcteur chaine directe S(z)
R Ci(z) * A(z) —
consigne sortie
(grandeur 4
réguler)
chaine de retour | _
B(z) i

Figure.3.1 : Schéma général d’un systéme échantillonné asservi et corrigé.

Si Gi(z) et Hi(z) sont les fonctions de transfert en boucle ouverte et en boucle fermée
du systeme initial et G.(z) et H.(z) les fonctions de transfert en boucle ouverte et en boucle
fermée du systeme corrigé, on aura :

Et: G.(2)=4(2)B(2)C(2)H.(2)
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Tout l’art de la correction des systémes échantillonnés consiste a choisir la bonne
fonction de transfert C(z) pour ce correcteur numérique de manicre a régler chaque
performance sur sa valeur requise, sans perturber, bien siir, le fonctionnement du systéme.
Ces corrections sont en général assurées par un calculateur.

3.1.3 Correction numérique d’un systeme a temps continu

Tres souvent, on choisit, pour des questions de souplesse et de précision, de corriger
numériquement un systeme a temps continu. Le schéma de la boucle d’asservissement
correspondante est représenté sur la figure 3.2. Un bloqueur doit, bien entendu, étre intercalé
entre le correcteur numérique et le systéme a commander.

E(z Sip)
T —/; —B,(p) Ap)
L -
—p Bip) .

Figure.3.2 : Asservissement continu commandé et corrigé numériquement.

Dans ce cas, les techniques de recherche d’un équivalent de la boucle d’asservissement
étudiées au chapitre précédent pourront s’appliquer, que ce soit un équivalent a temps continu
ou a temps discret.

3.1.4 Problemes spécifiques liés aux correcteurs numériques

Dans le cas des systemes a temps continus, il a été relativement facile d’identifier les
trois actions correctives simples : action proportionnelle, action dérivée et action intégrale et
visualiser immédiatement, par exemple sur un diagramme de Bode, I'influence que ce type
d’action avait sur le comportement fréquentiel, donc sur les performances.

Les choses ne sont pas si simples lorsqu’il s’agit d’asservissements échantillonnés. En
effet, les formes diverses et variées des équations de récurrence des systemes posent parfois
probleme lorsqu’il s’agit de conclure a des résultats généraux.

Certes, on peut toujours présupposer un principe d’équivalence entre les actions
correctives élémentaires en temps continu et la forme correspondante en z :

Action proportionnelle :  C(p)=K «— C(z)=K

1
— Z71
Action dérivée : C(p)=p «— C(z)=1-2"

Action intégrale : C(p):l «— C(z)=
p

Toutefois, il est hors de question, ici, d’imaginer corriger intuitivement un systéme
échantillonné en introduisant telle ou telle action corrective élémentaire (hormis 1’action
intégrale qui, elle, est sans trop de surprises et qui améliore systématiquement la précision en
boucle fermée). Ainsi, I’introduction du gain inférieur a 1 n’augmente pas obligatoirement la
stabilité¢, de méme que la rapidité n’est pas forcément affectée par 1’introduction d’un
dérivateur.
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3.2 TENTATIVES D’ACTIONS CORRECTIVES SIMPLES
3.2.1 Amélioration de la précision

Comme mentionné précédemment, peu de surprises ici. L’action intégrale améliore la
précision du systéme, mais, attention, elle peut bousculer les autres performances, de manicre
souvent imprévisible (au sens de la perception temps continu que 1’on a peut-étre de cette
action corrective).

a) Correcteur a action intégrale

L’étude menée au chapitre précédent a propos de la précision d’un systeéme asservi a
temps discret nous a conduit a la conclusion suivante : la présence, dans la fonction de
transfert en boucle ouverte, d’un intégrateur (i.e. d’un pole égal a 1) assure la nullité de
I’erreur de position, c’est-a-dire la précision statique parfaite. Si ce pdle est au moins double
(s’il y a au moins deux intégrateurs dans la chaine directe), I’erreur de vitesse est nulle,
autrement dit la précision dynamique parfaite est assurée. Par conséquent, pour améliorer
simplement la précision, en boucle fermée, d’un systeéme a temps discret, on peut choisir un
correcteur de fonction de transfert égale a :

C(z)= K

n
(1=2")
On choisira n = 1 si le cahier des charges impose uniquement une condition de nullité
de I’erreur de position et n = 2 si I’erreur de vitesse doit étre nulle également.

b) Conséquence sur les autres performances

Analysons au travers d’un exemple simple, l’influence de [I’introduction d’un
intégrateur sur le comportement global d’un asservissement. Soit un systeme a temps discret
de fonction de transfert en boucle ouverte G(z) placé dans une boucle a retour unitaire, avec :

2 2z
G(Z): E
1-0,5z7 z-0,5
2z
Soit, en boucle fermée : (2)= 3:-0.,5

Ce qui correspond a I’équation de récurrence : s(k)=0,17s(k—1)+0,67¢(k)

Ce systéme est stable en boucle fermée puisque 1’unique pdle de la fonction de transfert
en boucle fermée est inférieur a 1.

. 0,5
Soit : D= 3

=0,17<1

Considérons les suites d’échantillons d’entrée (échelon unité) et de sortie (tableau 3.1) et
représentons-les graphiquement (figure 3.3).

e(k) 1 1 1 1 1 1 1
s(k) | 0.667 | 0.777 | 0.796 | 0.799 | 0.800 | 0.800 | 0.800

Tableau.3.1 : Simulation de la suite d’échantillons
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5 ©
A

B - -

Figure.3.3 : Représentation temporelle du comportement du systeéme en boucle fermée.

L’erreur de position a pour valeur :

¢, =lim Locfim— L - 1709
"o+ G(z) oy, 22 1-0,5+2
z-0,5

Introduisons un intégrateur dans la chaine directe. On a, a présent :
K 27 27
C1-z'2-0,5 (z-1)(z-0,5)

27’ B 27’
(z-1)(z-0,5)+22> 3z2°-1,5z+0,5
B 2
3-1,577"40,5¢7

Ce qui correspond a I’équation de récurrence : s(k)=0,5s(k—1)—0,17s(k—2)+0,67e(k)

=0,2=20%

G(z)

avec K =1 dans un premier temps.

Soit, en boucle fermée : H (Z) =

Ou encore : H (Z)

Les poles de cette fonction de transfert (les racines de 1’équation 372 -1,5z+0,5) se

calculent aisément et on peut vérifier sans peine que leurs modules sont inférieurs a 1. La
condition de stabilité est donc toujours vérifiée.

En effet : A=b"—4ac=(1,5) —6=-3,75

L5375
6

12 :>|p1|=|p2|=0,41
Toutefois, les modules de ces pdles sont plus proches de 1 que 1’'unique pole du systeme
non corrigé (qui était égal a 0,17). On peut donc en déduire que la marge de stabilité est
légérement diminuée par 1’ajout du correcteur (elle reste néanmoins trés confortable).
Construisons un tableau avec les suites d’¢chantillons d’entrée (échelon unité) et de
sortie (tableau 3.2) et représentons-les graphiquement (figure 3.4).

ek) | 1 1 1 1 1 1 1
s(k) [ 0.667 | 1.000 | 1.056 | 1.028 | 1.005 | 0.998 | 0.998

Tableau 3.2 Simulation de la suite d’échantillons
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On note la présence d’un faible dépassement (environ 6 %) ce qui corrobore la légere perte de
marge de stabilité et une rapidité accrue puisque le temps de montée correspond a

I’échantillon k = 1, soit t,, = T.

5 ©
e |

Q

[ Y S
L
E

5

h_-.—--..-..--.-..-..-.--

23

e e -

Figure.3.4 : Représentation temporelle du comportement du systeme en BF apres correction.
3.2.2 Compensation de la perte de stabilité par placement des poles

Reprenons le systéme que nous venons d’étudier en ajoutant un gain K dans la chaine
directe en plus de I’intégrateur. On a donc maintenant :

K 27 2K7?
G - . =
(Z) 72205 (z—l)(z—O,S) avec K=#1
2K7*
. ‘o - H(7) =
Soit, en boucle fermée (Z) (1 n 2K)z2 152405
Cette fois, on a : A=b*—4dac= (1,5)2 —2(1+2K) =0,25-4K

Pour augmenter la marge de stabilité, on doit chercher a réduire le module des poles. Le
discriminant restant négatif tant que K > 0,0625, nous pouvons partir du principe que les
poles resteront complexes conjugués :

1,5+ j\J4K - 0,25

P =

2(1+2K)
| -] |_\/(1,5)2+4K—O,25_ I
Soit : PIEWRTT2k) T (r2k)

I1 suffit de choisir une valeur de K qui correspond a une valeur souhaitée pour le module
de chaque pole, par exemple :

|p|=|p,|=0.25 pour K=3,5
_ 7
8—1,5z7"+0,57

ce qui correspond a 1I’équation de récurrence:

s(k)=0,1875s(k —1)~0,0625s (k —2)+0,875¢(k)

On a alors : H(Z)

37



CORRECTION DES SYSTEMES
CHAPITRE 3 ECHANTILLONNES ASSERVIS

ek) | 1 1 1 1 1 1 1
s(k) | 0.875 [ 1.039 | 1.015 | 1.000 | 0.999 | 1.000 | 1.000

Tableau.3.3 : Simulation de la suite d’échantillons

On note bien la présence d’un amortissement plus prononcé, ce qui correspond bien a une
augmentation de la marge de stabilité

¢ @ aprés correction
¥ o avant correction
e,

TR S, B S

..--.@..---’..---

= ER——
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Ly m e

Pk e mmmm e mm e e ]

T A .

Figure.3.5 : Représentation temporelle du comportement du systeme en B.F apres correction.
3.2.3 Action dérivée

Un correcteur numérique a action dérivée possede une fonction de transfert C(z) égale a :
C(z)= K(l—z_l) avec K >0

Analysons, au travers d’un exemple simple, I’influence d’un tel correcteur. Soit A(z) un
systeme échantillonné placé dans une boucle de régulation a retour unitaire et précédé d’un
correcteur a action dérivée, avec :

|
Alz)= (z-0,1)
La fonction de transfert en boucle fermée du systeéme non corrigé est :
H,(z)= Alz) -
1+A(z) 2+0,9
L’unique pole de cette fonction de transfert est :
p,=—0,9

Ce pole possede bien un module inférieur & 1 mais sa valeur est proche de la limite

d’instabilité ; le systeme est donc stable en boucle fermée mais mériterait sans doute d’étre
corrigé pour disposer d’une marge de sécurité plus confortable. L’équation de récurrence en
boucle fermée étant :

s(k) =—0,9s(k—1)+e(k—1)

On peut aisément calculer et représenter graphiquement la suite des échantillons de sortie
lorsque I’entrée est un échelon unité pour constater qu’effectivement, le systeme est stable,
mais peu stable si I’on en croit le régime oscillatoire trés peu amorti. De plus, il est treés peu
précis.
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e(k) 1 1 1 1 1 1 1 1 1
s(k) 0 1 0.1 {0910 0.181|0.837 |0.247 | 0.778 | 0.300

Tableau.3.4 : Simulation de la suite d’échantillons
5 0
-f'k . M
|l #—o-—8—-B-—B-B— -
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Figure.3.6 : Représentation temporelle du comportement du systeéme en B.F avant correction.

En présence du correcteur a action dérivée, on a :

G(Z)ZC(Z)A(Z):K(I_ZI): K(z-1)

201 z(z-01)

Remarque : compte tenu des connaissances que nous avons acquises pour les systemes a
temps continu, nous nous attendons a ce que la stabilité du systeme soit améliorée.

La fonction de transfert en boucle fermée du systeme corrigé est donc :

H(2)- G(z) K(z-1) B K(z-1)

C14G(2) 2(z-00)+K(z-1) Z+(K-01)z-K

L’équation de récurrence correspondante est :

s(k) = (0,1—K)s(k—1)+Ks(k—2)+Ke(k—1)+Ke(k—2)
Calculons les pdles de cette fonction de transfert.
Cette fois, on a : A=b*—4ac= (K —0,1)2 +4K

Ce discriminant étant toujours positif, on a :

~(K-0.1)% j\(K -0,1) +4K
2

Py =

01-K +y(K -0,1)’ +4K

Soit : |pl|= 5

K—0,1+(K-0,1) +4K

Et: |p2|= >
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On peut représenter, sur un méme graphique, les variations de | p1| et de | p2| en fonction
de K (figure 3.7).
Pour que le systéme soit stable, il faut que les deux pdles aient un module inférieur a 1.

T 1211
|Pz| i
L 0,71
0,55} -nerspleeza f el
0,14 : i
: *— 4 : } :K
0 03 0,355 0,9 1.2 1.5

Figure.3.7 : Variations des modules des pdles en fonction du gain K.
On en déduit donc : K < 0,55

Choisissons par exemple K = 0,4 puis calculons et tragons la suite d’échantillons en sortie
du systeme lorsque celui-ci est soumis a un échelon unité (tableau 3.5 et figure 3.8).

Dans ce cas, on a : S(k)=—0,3s(k—1)+0,4s(k—2)+0,4e(k—1)—0,4e(k—2)

ek) [ 1] 1 1 1 1 1 1 1 1
s(k) | 0 [ 0.400 [-0.120 | 0.196 | -0.181 | -0.107 | 0.110 | 0.067 | -0.050

Tableau.3.5 : Simulation de la suite d’échantillons

5 ©
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Figure.3.8 : Représentation temporelle du comportement du systeme en B.F apres correction.

Le systéme est effectivement plus stable puisqu’il converge vers une valeur finie
beaucoup plus vite, ce qui est conforme au calcul des nouveaux poles.

Soit : |p1|=0,5
et : |p,|=0.8

Toutefois, ce type de correction est inacceptable puisque I’erreur de position atteint a
présent 100 %.
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3.3 SYNTHESE D’UN CORRECTEUR NUMERIQUE PAR DISCRETISATION
D’UN CORRECTEUR CONTINU

3.3.1 Principe

La méthode que nous allons présenter s’adapte particulierement bien aux problémes de
synthése d’une correction numérique d’un asservissement continu (figure 3.9). Nous
supposerons donc que nous cherchons a asservir un systéme de fonction de transfert A(p) au
moyen d’un correcteur C(z). Pour simplifier, nous supposerons que la boucle est a retour
unitaire.

E(p) Sp)
— 0D BG4 >

Figure 3.9 Asservissement continu corrigé numériquement.

La technique consiste a étudier cet asservissement en temps continu (comme représenté sur
la figure 3.10) puis a rechercher le modele numérique équivalent au correcteur continu C(p)
que nous aurons calculé pour conférer au systeme les performances d’un cahier des charges.

E{p) S(p)
) Bypy—> Al) >

Figure 3.10 Mode¢le a temps continu de 1’asservissement.

En théorie, il faut tenir compte de la présence du bloqueur dans I’étude en temps continu.
Toutefois, une fréquence d’échantillonnage suffisamment grande peut nous permettre de le
négliger. Dans ces conditions, on est ramené stricto sensu a I’étude du systéme en continu.

Le cahier des charges imposé au systeme nous amene au calcul classique de la fonction
de transfert du correcteur et il suffit, ensuite, de rechercher un équivalent discret de cette
fonction de transfert. Les équivalences qui peuvent €tre utilisées sont :

-7
— I’équivalence a la dérivation : p T
e
2(1 -z )
— la transformation bilinéaire : P > ——
r.(1+2")
— la transformation bilinéaire : p—p <«— z-¢€ e

Remarque : rappelons a propos de cette équivalence temporelle que les tables fournies en
annexe proposent des équivalents qui sont spécifiquement adaptés pour conserver le gain
statique du systeme.
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1 1 )\1-el"
On donne : G(p):— > G(Z):(__] —
P—p; p,)z—e"
1 1 1= ePiTe
De sorte que : G(0)=—— «— G(I)= L—_j —
0-p, p,)z—e"

On peut choisir de conserver la valeur du gain pour une autre fréquence que la fréquence
nulle, notamment pour la fréquence autour de laquelle porte la correction du systeme.

3.3.2 Exemple

On souhaite asservir un systeme continu de fonction de transfert G(p) en utilisant un
correcteur numérique et en imposant le cahier des charges suivant

— Marge de phase Agp =45’

— Temps de montée ¢, =0,2s

K

3
o)
10

a) Synthese du correcteur en temps continu

On donne : G(P) = avec K > O réglable

La valeur de K qui assure le temps de montée voulu se calcule en utilisant la relation

3
approchée : o,~—~15 radls

On a alors : G(a)co)zl = K=5,86
Pour cette valeur de K, on obtient une marge de phase égale a :

A(0:ﬂ+(p(a)co):7z—3arctan%:11°

Il est donc nécessaire d’introduire un correcteur a avance de phase caractéris€ par une

remontée de phase de 34 centrée sur la pulsation @, .

Soit : C(p)=1+an
1+Tp
. a—1
avec : @ =arcsin— = a=3,55
a+1
1
et: =w, = T=0,0355s
T\/E c0
d’oul - C(p)=1+0,124p
1+0,035p
b) Calcul du correcteur numérique équivalent
1-7"
Utilisons, pour simplifier, I’équivalence a la dérivation: P <—— T
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-1
1+0,124(1_TZ j
C(z)= ‘

- -l
1+0,035(1 £ J
T,

Choisissons la fréquence d’échantillonnage de sorte qu’elle soit comprise entre 6 fois et 25
fois la bande passante du systeme. Cette bande passante est telle que :

Soit :

5,86 1
G(2xf,, )= : = = f,. =2,8Hz
( fﬂ) 47T2f1,2 \/5 pr
as +1
100

On choisit par exemple :  f, =100Hz < T,=0,01s

C1412.4(1-27) 13,42-12,4
U as(1-2) T 452-35

Finalement :

¢) Validation des résultats

Validons ces résultats, bien évidemment en recherchant le modele a temps discret
équivalent a I’ensemble de I’asservissement. Prenons 1’équivalent le plus simple pour la
fonction G(p), autrement dit I’équivalent a la dérivation :

5,86 5,86
ole)= —' Y (11-10c)
st ()
10T,
La fonction de transfert en boucle fermée est :
H(2) C(z)G(z) 5,86(13,4z-12,4)
Z = =
1+C(2)G(2)  (11-102") (4,52-3,5)+5.86(13,42-12,4)
5,86(13,4—12,47"
Soit : H(z)= ( )

(11-1027") (4,5-3,52")+5,86(13,4-12,4")

H(z)- 78.5-72,57""
6068 —21066z" + 2755522 —16050z +3500z7*

d’ou I’équation de récurrence correspondante :

s(k)=3,47s(k —1)—4,54s (k —2) +2,655(k —3) 0,585 (k —4) +0,01294e (k )~ 0,01195¢ (k 1)

k 0 5 10 15 20 25 30 35 40

t 0| 0.05s | 0.10 | 0.15 0.20 0.25 0.30 | 0.35 0.40
e(k) |1 1 1 1 1 1 1 1 1
s(k) | 0 | 0.400 | -0.120 | 0.196 -0.181 -0.107 | 0.110 | 0.067 | -0.050

Tableau.3.6 : Simulation de la suite d’échantillons
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Figure.3.11 : Représentation temporelle du comportement du systeme en B.F aprés correction.
Le temps de montée peut €tre repéré vers le douzieme échantillon, soit #,, = 0,12 s.

Par ailleurs, le dépassement, visiblement égal a 40 %, correspond a un coefficient
d’amortissement en boucle fermé d’environ 0,3.

On a alors : Er=03 = Apx~30

Les performances constatées sont voisines des performances attendues, méme si le
systeme est un peu plus rapide et un peu moins stable que prévu. Ces différences s’expliquent
par les nombreuses approximations que nous avons effectuées. Compte tenu de I’ensemble de
ces approximations, le résultat obtenu est relativement bon.

3.4 SYNTHESE D’UN CORRECTEUR NUMERIQUE PAR METHODE POLYNOMIALE
3.4.1 Principe

Les méthodes polynomiales figurent parmi les méthodes de syntheése de correcteurs
numériques les plus utilisées. Elles sont en effet tres souples et relativement simples a mettre
en ceuvre. Considérons un systéme échantillonné de fonction de transfert A(z) placé dans une
boucle a retour unitaire en cascade avec un correcteur C(z) que 1’on cherche a déterminer pour
conférer au systeme complet, en boucle fermée, des performances dictées par un cahier des
charges : précision, amortissement, rapidité, marge de stabilité.

E(z) S(z)
C(z) A(z)

¥
L 2

Figure.3.12 : Boucle d’asservissement échantillonné avec correcteur.

N

D’une manicre générale, I’objectif de 1’action corrective consiste a rechercher C(z)
pour que cette boucle d’asservissement de fonction de transfert en boucle ouverte G(z)
possede les caractéristiques attendues.
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Eiz} 5(z)
G(z)

¥

Figure.3.13 : Boucle d’asservissement équivalente.

La technique de la syntheése par méthode polynomiale consiste a corriger le systeme de
sorte que G(z) corresponde a un systeme du second ordre, de fonction de transfert :

K (1 +e 2N e cos @ T A1 - £ )

G(Z): 2 o T 2 “2¢w,T,
7" —=2ze " coso T \1-& +e ™"

(Voir chapitre 2, paragraphe 2.5.1.)

Dans ces conditions, la fonction de transfert en boucle fermée H(z) est aussi une
fonction du second ordre :

2&prp@,prT, ~SBF O T, 2
Ky (1+e e —2e " oS @, g1, 1_§BF)

H (Z) - - T, 2 ) T,
z —2Z€ Sor 0T, CcoS a)nBFTe 1_6&317 +e Sor@uprT,
Nous savons que les performances en boucle fermée, pour un tel systeme, se traduisent
par des conditions sur @,z pour la rapidité et sur &, pour la marge de stabilité et, bien

évidemment, pour I’amortissement.

3 3
En effet : L, R—R——
a)CO a)nBF
A’
et : Sop ®——
100

En ce qui concerne la précision, il suffit que G(z) posséde un pole égal a 1 pour que I’erreur
de position soit nulle.

Toutes ces considérations nous permettent donc de déterminer les fonctions H(z) et
G(z) idéales, du second ordre, qui possedent les performances requises. Pour que notre boucle
d’asservissement initiale (figure 3.12) possede elle-méme ces performances, il suffit d’avoir :

G(2)=C(2)A()

et donc, de placer dans la chaine directe, le correcteur de fonction de transfert :
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3.4.2 Exemple

Considérons le systeme échantillonné a une période 7, = 0,2 s de fonction de transfert :

z+0,3
Al7)=2—=
(&=""0%

On souhaite placer ce systtme dans une boucle a retour unitaire et on veut que le
systeme possede, en boucle fermée, les performances suivantes
e,=0, 1,=08s et &, =0,45(marge de phase d’un systéme continu équivalent égale a

45° et dépassement de I’ordre de 20 %).

Construisons la fonction G(z) a priori : elle posseéde obligatoirement un pdle égal a 1
pour garantir une erreur de position nulle.

On a donc : G(Z) :m
(z-1)(z-b)+a B Z—(1+b)z+a+b

Or nous devons, avoir, pour garantir les performances exigées :

d’ou: H(z)=

-2 T, ~SBr O T,
KBF (1+€ Sar@uprl, 2€ SBF Dnge cos a)nBFT;z 1_5;1: )

H(Z): 2 —Epr@prl, 2 —2&5r 0,55 T,
Z —2Z€ BF Wnprle Cosa)nBFT; 1_§BF +e BF OnBrle
3
avec: &pr =0,45 et O,pr = T 3,75rad | s
0,39K
d’ou: H(z) = BE

2 -1,122+0,51
Identifions les deux fonctions de transfert en boucle fermée :
1+b=112 b=0,12
=
a+b=0,51 a=0,39
Le gain statique en boucle fermée est bien str égal a 1 puisque I’erreur de position est nulle.
0,39
(= D)(z-0.12)
G(2) 0,39(z-0,8)

C(z)= A2) = (z-1)(z-0,12)(z+0,3)

G(z)=

46



Chapitre 4

Représentation d’état des systémes a temps
discret

4.1 PRINCIPE GENERAL

Tout comme les systeémes a temps continu, les systemes a temps discret peuvent étre
placés sous forme de représentation d’état. Les deux formalismes sont trés voisins. Deux
approches traditionnelles sont souvent étudiées pour aborder la représentation d’état des
systémes discrets : la discrétisation des équations d’état continues et la représentation directe
par analogie avec la représentation d’état en temps continu. C’est cette deuxiéme approche
que nous avons privilégiée car elle permet de généraliser tres rapidement les propriétés

démontrées aux systemes continus.

4.1.1 Variables d’état en temps discret

Dans la représentation d’état en temps continu, les schémas fonctionnels des systemes
ne comportant que des intégrateurs et des gains, il était possible, a partir de tels éléments,
de reconstruire n’importe quelle fonction de transfert. En temps discret, il est possible de
décomposer un systeme en utilisant des gains et des opérateurs dits de décalage, de fonctions
de transfert z'!. La figure 4.1 présente un exemple de systéme composé de tels éléments. On

peut, dans un tel modele, définir des variables d’état, que nous noterons x;(k) et qui

représentent la valeur des signaux xi aux instants k7, T, €tant la période d’échantillonnage de

tous les signaux présents dans le systeme.

e(k) o . r s(k)

.

Figure.4.1 : Représentation d’état en temps discret.

Remarque : Rappelons ici que 1’équation X3(z) = z'Xa(z) se traduit, en représentation
temporelle a temps discret par la relation x3(k + 1) = x2(k). D’ou la dénomination d’opérateur
de décalage.
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4.1.2 Modélisation du fonctionnement du systeme

Dans une représentation en temps discret, la possibilité d’exprimer 1’état du systéme
a un instant donné en fonction du signal d’entrée et en fonction de son « passé », autrement
dit, de son état précédent, prend tout son sens. La forme générale pour un systtme mono-
entrée et mono-sortie des équations d’état en temps discret correspond donc a :

{x(k +1)=[A]x(k)+(B)e(k)
s(k)=(C)x(k)

La matrice de commande [A] est une matrice carrée, (B) est un vecteur colonne et (C) est
un vecteur ligne.

Remarque : pour un systeme d’ordre n, c’est-a-dire possédant n variables d’état, la
> 2
premiere équation, dite de commande, correspond a un systeme de n équations :

x, (k+1)=a,x (k)+a,x, (k)+...+a,x, (k)+be(k)
x, (k+1)=a,x, (k) +ayx, (k)+...+a,,x, (k)+b,e(k)

x, (k+1)=a,x (k)+a,x,(k)+...+a,x

n

(k)+b,e(k)

Si le systeme possede plusieurs entrées et plusieurs sorties : soit n le nombre de variables
d’état, m le nombre d’entrées et p le nombre de sorties. Dans ces conditions, la matrice de
commande est toujours une matrice n X n, [B] est une matrice n x m et [C] est une matrice
p % n. Pour étre complet, il faut tenir compte d’une possible relation directe entre entrées et
sorties. La matrice [D], de dimensions m x p représente ce lien. Signalons pour finir que
les coefficients des différentes matrices peuvent aussi étre variables dans le temps (c’est-a-
dire s’exprimer en fonction de k).

x(k+1)=[ A(E)]x()+[B(k)Je (k)
(k) =[C(6)]x(k)+ [D(K)Je (k)

On a alors :

On adopte fréquemment la représentation schématique de la figure 4.2 pour illustrer cette
modélisation. Attention, dans cette représentation, les signaux sont en réalité des vecteurs
de signaux a temps discret.

A
e(k) x(k+1 k)
» B _( ) z-l | & c E(
vecteur de x{ k‘jl vecteur de
commande sortie
. D

Figure.4.2 : Représentation schématique d’une modélisation d’état en temps discret.

Si les coefficients des différentes matrices sont constants, le systeme est dit invariant.
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4.2 RESOLUTION DES EQUATIONS D’ETAT

Nous nous limitons ici a I’étude des systémes invariants possédant une seule entrée et
une seule sortie. Formulons I’hypothése que 1’état du systéme a I’instant 0 est connu et que
la suite d’échantillons d’entrée 1’est également entre I’instant 0 et I’instant ko-1. Résoudre
les équations d’état revient a rechercher 1’état du systéme a I’instant ko. Comme cet état
sera déterminé sans tenir compte de la valeur de 1’échantillon d’entrée a cet instant, on
parle ici de prédiction de 1’état du systeme.

4.2.1 Résolution des équations d’état par discrétisation d’une solution continue
Soit le systéme d’équations d’état déterministe, a temps continu :

d"T(tt)zAx(t)We(t)

s(t) = Cx(t) + De(t)

x(t), nx: un vecteur d'état
Ou: u(t), Ix: un vecteur de commande

y(t), mx: un vecteur de sortie

La solution s’écrit :

x(r)=e"x(0)+ IeA(H)Be (r)dz
0

s(t) = Cx(t) + De(t)

Pour discrétiser le systeme, il faut disposer un convertisseur numérique-analogique
pour transformer le vecteur u(k) des séquences numériques d’entrée en vecteur de signaux
a temps continu, et d’un convertisseur analogique-numérique pour transformer le vecteur
des signaux de mesure en vecteur y(k) de s€équences numériques (figure 4.3).

ul: }rt

— | CNA —m 5§ |—® CcAN ™

Figure.4.3 : Discrétisation d’un systéme continu

Soit T, la période d’échantillonnage. Le CNA est un bloqueur d’ordre zéro (BOZ) :
Vte [kTe,(k +1)T6},e(t) = e(k)

On peut alors calculer la solution d’état aux instants d’échantillonnage :
T,

x[(k+1)T, ] =" x(kT, )+ [ """ Be(r)dr

T,

e

0
L)+ I " drBe (k)
0

x[(k+1)T, |=e

AT, (kT )
x[(k+1)T, ] =e" x(kT,)+[ A (" ~1) | Be (k)
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Soit :
k + 1 + Ge (k)
)+ De (k)
Oou = G=A" ( -1 ) B

4.2.2 Prédiction de I’état du systéme a un instant quelconque

Procédons par itérations successives. On a :

x(1) = [A]x(0)+(B)e(0)
x(2) =[Alx()+(B)e(1)

)= AL 1)+ (B)eli-1)
;c(ko—l)z[A]x(k —2)+(B)e(k,—2)
x(ko):[A] ( ) ( )e(ko 1)
Soit : x(ko):[A]{[ Jx(k, =2)+(B)e(k, - 2)}+( Je(k,—1)
(

Fou: ©(ky) =[AT x(k ~2) +[A](B)e(k, ~2) + (B)e(k, 1)

En remplacant successivement les x(i), on obtient :

x(k) =[AT" x(0)+ S[AT " (B)e(i)

i=0

Le principe des itérations successives est trés intéressant a utiliser dans le cas ou I’on
recherche I’évolution de 1’état du systéme pour tout instant sur I’intervalle [0, ko].

4.2.3 Exemple

Considérons un systeme régi par I’équation de commande :

x(k+1)=[A]x(k)+(B)e(k)

AT ]« @[}

Formulons I’hypothese que ce systéme est sollicité par un échelon unité, soit e(k) =1
pour tout k >0 et cherchons la suite des 5 premiers échantillons correspondant aux deux
signaux du vecteur d’état, soit x1(k) et x2(k). On suppose que 1’état initial est caractérisé par
x(0)=0.

En procédant par itérations successives, on obtient aisément la suite correspondant au
vecteur d’état a chaque instant d’échantillonnage.
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-1 11](6 1 1
x(5)= + =
-2 —1)\6) \2) |-16
4.3 COMMANDABILITE D’UN SYSTEME A TEMPS DISCRET

La commandabilité des systemes a temps discret s’é¢tudie exactement de la méme maniere
que pour les systemes a temps continu.

4.3.1 Accessibilité

Un systéme est dit accessible a 1’état x(ko) s’il est possible de déterminer une suite
d’échantillons d’entrée e(k) sur I’intervalle [0, ko-1] de maniere a amener le systeme de état
x(0) = 0 vers I’état x(ko).

Si un systeme est accessible quel que soit x(ko), il est dit completement accessible.
Remarque : les notions d’accessibilité, de commandabilité et de gouvernabilité sont encore
ici, généralement confondues.

4.3.2 Critére de commandabilité

Un systeme est completement accessible et complétement commandable si et
seulement si les vecteurs (B), [A](B), [A]’(B) , . . ., [A]"'(B) sont linéairement
indépendants.

Cet énoncé peut se traduire également de la maniere suivante : on définit la matrice
de commandabilité ou de gouvernabilité par la matrice formée des n vecteurs colonnes (B),
[A](B), [AF’(B), . .. ,[A]"'(B):

[Clqai®y = [(B) [AI(B) [A]*(B) - - - [A]"'(B)]

La paire [A], (B) est completement commandable si et seulement si la matrice de
commandabilité est réguliére, autrement dit si son déterminant n’est pas nul.

4.4 OBSERVABILITE DE L’ETAT D’UN SYSTEME

L’observabilité des systémes a temps discret s’étudie exactement de la méme
maniere que pour ceux a temps continu.

4.4.1 Définition

Un systeme est dit observable a un instant k»7,, si la connaissance du signal d’entrée et du
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signal de sortie sur un intervalle de temps [k17,, k2T.] permet de calculer I’état du systéme
a 'instant k7.

Si un systéme est observable quel que soit I’instant k27e, il est dit completement
observable.

4.4.2 Critére d’observabilité

Un systeme est complétement observable si et seulement si les vecteurs colonnes
(O, [ATI(O)T, [ATP(C)T, . .., [AT]™!(C)T sont linéairement indépendants.

Cet énoncé peut se traduire également de la maniere suivante : on définit la matrice
d’observabilité par la matrice formée des n vecteurs colonnes (C)7, [AT](C)T, [ATIA(C)T, ..,
[AT]n—I(C)T:

[O]qaic)=[(C)" [ATIC)" [ATF(C)..... [AT](C)]

La paire [A], (C) est completement observable si et seulement si la matrice
d’observabilité est réguliere, autrement dit si son déterminant n’est pas nul.

4.4.3 Exemple

Considérons un systeme régi par les équations :

{x(k +1)=[A]x(k)+(B)e(k)
5(k)=(C)x(k)
11

avec : [A]{_1 2} et (C)=(1 -1)

La matrice d’observabilité est définie par :

[Oljuey =€) [T (0)'] aveC:(C)T:(l—I] et:[AT]:[_ll _21}

or: OICER IR

. 1 0
dou: [0y = 14l 7 det[O] ¢y =1

Le systeme est donc completement observable.

4.5 RELATION ENTRE LA REPRESENTATION D’ETAT ET LA FONCTION
DE TRANSFERT D’UN SYSTEME

4.5.1 Représentation d’état a partir de la fonction de transfert

En temps discret comme en temps continu, la représentation d’état d’un systéme n’est pas
unique. Nous présentons ici plusieurs types de représentation d’état que 1’on peut obtenir a
partir d’une fonction de transfert G(z). Les principes de construction étant rigoureusement
les mémes que pour la représentation d’état en temps continu, nous nous limiterons a
présenter les résultats essentiels.
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a) Représentation modale

Ce type de représentation, encore appelée représentation parallele, convient
particulierement bien a la représentation d’un systéme possédant plusieurs pdles réels
distincts. Soit G(z) sa fonction de transfert :

(04 (24
2 4.4 n

:E(Z)_z—pl 2—Dp, z—p,

Cette écriture fait apparaitre la somme de n fonctions de transfert et peut étre matérialisée,
sous forme de représentation d’état, par le schéma de la figure 4.4 en faisant apparaitre n
blocs élémentaires placés en parallele.

—
-1
z . a, -
x,(k+1) x, (k)
—
k sk
e(k) |, - J o 2 s( )
x(k+1) x(k)
_.Pﬂ
-1
z > o, »
x,(k+1) x (%)

Figure.4.4 : Représentation modale d’un systéme a temps discret.

On lit immédiatement :

x, (k+1)= px, (k)+e(k)

p 0 0 1
k=) O e e
d’ou: : . . 0 :
O cee O D, 1
s(k)=(a, a, -+ a,)x(k)

La matrice de commande [A] est diagonale et ses valeurs propres sont les pdles de la
fonction de transfert.
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b) Représentation série

_S(2) a,
)= ) " =)= pa) (o=

Cette écriture fait apparaitre le produit de n fonctions de transfert et peut tre matérialisée
par la mise en cascade de n blocs élémentaires.

Soit :

-P -p,

f? -1 . -1 N (%)
x,(k+1) x,(k) x &)

]

Figure.4.5 : Représentation d’état d’un systéme discret sous forme série.

La figure 4.5 propose une représentation d’état cohérente avec cette forme en
cascade de la fonction de transfert.

Dans ce cas,on a:

l)1 0 . O 1
0

k= P @ o)

: ... 0
o -~ 1 p, 0
s(k)=(0 0 - a)x(k)

¢) Représentation compagne commandable
On suppose ici que la fonction de transfert n’est pas factorisée.

m—n m—n—1 —n+l -n
b, 2" " +b, 2"+ bz bz

Soit : G(z)= ~ .
( ) 1+an_1Z1+“'+a1Z n+l

—-n
+a,z

La figure 4.6 représente la forme compagne commandable en temps discret.

By
ﬂ.u-z
L

e(k) y - ok S(k)

— = * - - z » bD

x (k1) x,(k) XpilK) x,(%)
- Bl
K1 (K) 5

Figure.4.6 : Représentation d’état sous forme compagne commandable.
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Les équations d’état se déduisent naturellement de cette représentation :
X, (k +1) = X, (k)
x, (k+1)=x, (k)

.)cn1 (k+1)=x, (k)
x, (k+1)=—ayx, (k)—ax,(k)—---—a, x, (k)+e(k)
s(k)=byx, (k)+bx, (k)+---+a,x,,, (k)

m” m+1

0 1 0 --- 0 0
: o 1 °-. : 0
x(k+1)= : U { x(k)+f
d’ou : 0 0 0 1 O e(k)
| ~4dy 4, a,. | 1
s(k)=(b, b, 0 0)x(k

d) Représentation compagne observable

La représentation compagne observable peut €tre mise en évidence a partir de la
forme de G(z) déja transformée dans le paragraphe précédent :

m—n m—n—1 —n+l -n
b 7""+b .z ++ b2 4Dz

—-n+l

G(z)=

l+a, z"' ++az"" +a,z"

La figure 4.7 représente la forme compagne observable en temps discret.

(k)
E,}D hl :’?"
9 RALY L] XaR) G x, (ke [ 300
k4 = . aiREEEE I — T z >
% X k) xm](k)% s(k)
r.'.ED ﬂ'l e ——— E.!m' o rrmnmmm—— i ——— E.!"_l

Figure.4.7 : Représentation d’état du systeme sous forme compagne observable.

Les équations d’état se déduisent naturellement de cette représentation :
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[0 0 —ao_ bo
1 0 - 0 —q
o1 0 --- 0 : b
k+1)=. . . . . . k)+| "

x( ) T : x() 0 e(k)
o - 0 1 O :
_O -0 0 1 —a, | 0

s(k)=(0 - 0 1)x(k)

4.5.2 Calcul de la fonction de transfert a partir de la représentation d’état
a) Transformée en z des équations d’état

Si on applique la transformation en z aux équations d’état et si on suppose nulles les
conditions initiales, on obtient :

{x(k+1)—[A]x(k)+(B)e(k) _ {zX(z)z[A X (z)+(B)E(z2)
s(k)=(C)x(k) S(2)=(C)X (2)

On a donc : X(Z)=(ZI—[A])_1(B)E(Z)
On tire alors I’expression de S(z) :

S(2)=(C)(a ~[A])" (B)E(z)

La fonction de transfert du systeme est donc :
S(z -1
6(2) = =(©)(e1-[a]) ' (8)

L’inverse d’une matrice carrée ¢tant égale a sa matrice adjointe divisée par son

déterminant, nous pouvons en déduire que les pdles de la fonction de transfert sont les
valeurs de z qui sont solutions de 1’équation :

det(zf ~[A])=0
Ce sont donc les valeurs propres de la matrice [A].

Attention : La fonction de transfert obtenue correspond uniquement a la partie observable
et commandable du systeme.
4.6 COMMANDE ECHANTILLONNEE D’UN SYSTEME A TEMPS CONTINU

Tout comme nous 1’avons vu dans la quatriéme partie de cet ouvrage, la commande a
temps discret d’un systéme a temps continu est une opération tres fréquente. La
représentation d’état ne change rien a cela.

Nous avons alors affaire a des systemes dont le schéma général correspond a la figure 4.8.
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dispositif de e(k) £ L (1)
— | commande T oqueur oy | R
a temps discret P

l

etat x(¢)
Figure.4.8 : Systeme a temps continu commandé¢ a temps discret.

Le bloqueur (par exemple d’ordre 0), assure au systéme a temps continu un signal de
commande e(f) constant entre deux instants d’échantillonnage et égal a e(kT,) entre les
instants kT, et (k + 1)T,.

4.6.1 Comportement du systéme

Le comportement du systéme a temps continu est régi par ses équations d’état et son état, a
un instant # quelconque, est déterminé par la relation :

x(1) =N x(1) + [ ) (B e(7)

Il est possible, a partir de cette équation, de calculer 1’état du systéme a un instant
d’échantillonnage (k+1)7, en fonction de son état précédent x(k7¢) et du signal d’entrée

(constant sur cet intervalle) e(kT,) :

x[(k+1)T, |= eV x (kT,) + I
Sur I’intervalle de temps considéré, on a :

e(r)=C" =e(kT,)

(k+1)T,

A] {(k+1)T,—2 (B) (T)dT

Par conséquent :

(k1) ] = (k7)) + U“‘“) elAl }(B) (KT.)

En posant : F(T) =™ et g(kT,)= J'("“)T AT~} 5

Ona: x[(k+1)T, |= £ (T.)x(KT,)+ g (KT,)(B)e(kT,)

Il est également possible de connaitre 1’état du systetme entre deux instants
d’échantillonnage, par exemple entre k7, et (k + 1)T, a partir de cette équation qui est
valable quel que soit I’instant z.

Pour kT, <t < (k+ 1)T,,ona:

x(r)=¢ fkT>x(kT)+U”‘ Alfdr](B)e(kTe)
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4.6.2 Influence de la période d’échantillonnage sur D’observabilit¢ et la
commandabilité d’un systéme discret

Le choix de la période d’échantillonnage est susceptible d’influencer I’observabilité
et la commandabilité d’un systétme. On montre qu’un systéme a temps discret perd son

observabilité et sa commandabilité si il existe deux valeurs propres distinctes A, et A, de

la matrice [A] qui possédent la méme partie réelle et dont la différence des parties

27
imaginaires est un multiple de la pulsation d’échantillonnage @, = T

e

Remarque : il y a donc peu de chance qu’un systéme a temps continu perde sa
commandabilité et son observabilité si on prend soin de ne pas échantillonner a une
fréquence multiple d’une de ses fréquences propres.
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ANNEXE A

Table des transformeées en z usuelles

Fonctions temporelles

Transformées en z

= A(z)=1
u(r)=1 . ﬁ
v(z) =kt VD)= (ZZ_T; )2
s(t) =1’ S(z)= %
0ze” S@)=—
s(t)=te™ S(2)= %ei)
sit)=1-¢e* S0 t(z—e ")

(Z—l)(z—e‘”n)

S =e —e ™"

S(2) = — g ——

7—e % -
1 e ) Z(l—ef"n)
—f—— §(7) = .
S(t) ! Cl+ a (Z) (Z—1)2 a(z_])(z_e—aﬁ)
= b g @ oo S(z)=——+ bz _ az
S(f)—1+a—be a—be -1 (a_b)(z_e—an) (Cl—b)(z—e_be)
Z Z zaTe™ ™
sit)=1—-e“-ate™ S(z)= - _

Z _1 Z —e_”T" (Z _ ewTe )2

zsin T
t) =sin ot S(z) = .
o= 2 Zz—2zcosa)T6+1
z(z—cosawT
s(t) =cos wt S(z)= ( )

2 =2zcos T, +1

s(t)=¢e“ sin ot

—aTl, -
ze Y sin ol
S(Z) = e

7' =2z " cos T, +e "

s(t)=e " coswt

2 —aT,
7" —ze “ccoswl
S(Z) = e

7 =2z " cosal, +e "

59



Annexes

ANNEXE B

Equivalence entre fonctions de transfert
en temps continu et en temps discret

Il n’existe pas, a proprement parler, d’équivalents exacts entre une fonction de transfert en
temps continu, de type Laplace et une fonction de transfert en temps discret en z. Les
équivalents proposés sont plus ou moins précis, plus ou moins efficaces et plus ou moins
délicats a manipuler. Le choix d’un type d’équivalent est susceptible d’influencer la validité
des résultats en termes de réponse temporelle ou de représentation fréquentielle.

. -z
Equivalence a la dérivation : p T
, 2(1-2")
Equivalence a I’intégration : p =

T (1+77)
Equivalence modale : p—p, «—> z—¢’ /e

La table ci-dessous propose quelques équivalents basés sur I’équivalence a la réponse
impulsionnelle et justifiés, pour les plus simples, par 1’équivalence modale. Ils sont
spécifiquement adaptés pour conserver le gain statique du systeme. Ces équivalents peuvent
étre obtenus par la relation :

G(2)= Z_le{G(p)} [ [s(0)at]

Z p Z

Ou G(p) est la transformée de Laplace de la réponse impulsionnelle du systeme a temps
continu.
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Fonction de transfert
en temps continu

Fonction de transfert
en temps discret

G(p)=— Glz)=—
P z—-1
G(p)=— 6=
p+a a(z—e )
G( ):— ; ) (l_e—ar) 1_e—bT)
b (p+a)(p+b) (Z)_ab(z—e“Tf)(z—ebT)
1 I
G(p)_p(p-l-a) G(Z)_a(z—l) az(z—e’“Tf)
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