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Avant propos 
 

  

  

 

Ce manuel de cours, intitulé « Systèmes Asservis Numériques », est destiné aux étudiants 
en Master électrotechnique et en Master Instrumentation. Les informations contenues dans ce 
cours ont été choisies et organisées de la meilleure façon possible afin d’être exhaustives tout 
en étant également assimilable par l’ensemble des étudiants. Une organisation particulière a été 
mise sur la forme de ce manuel en respectant le canevas officiel de notre tutelle, ce qui permet 
d’en faciliter la compréhension.  

Ce cours est organisé en quatre chapitres, dans le premier, on présente la modélisation 
des signaux et des systèmes échantillonnés. En deuxième chapitre, on traite le phénomène de 
stabilité et performances des systèmes échantillonnés asservis, le chapitre trois est consacré à 
la correction des systèmes échantillonnés asservis, et on termine ce cours par le dernier chapitre 
où on va aborder la représentation d’état des systèmes à temps discret. 
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Chapitre 1 

 
Modélisation des signaux et des systèmes 
échantillonnés 
 

1.1   INTRODUCTION 

Dans la réalité industrielle, la complexité des systèmes, ainsi que celle des traitements à 
réaliser, nécessite souvent le recours à des outils numériques de traitement : ordinateurs, 
calculateurs, systèmes numériques en tout genre. De tels outils ne peuvent en aucun cas 
s’accommoder de signaux continus ; ceux-ci doivent être transformés en suites de nombres 
pour pouvoir être traités. De même, ces systèmes délivrent, à leur sortie, des suites de valeurs 
numériques, autrement dit, des signaux numériques.   

Pour transformer un signal continu en une suite de nombres compatibles avec un système 
de traitement numérique, on a recours à deux opérations successives : l’échantillonnage qui 
consiste à prélever, à intervalles de temps réguliers, des valeurs discrètes du signal, puis, la 
conversion analogique numérique qui transforme ces échantillons en nombres, généralement 
codés sous forme binaire (Figure 1.1).   

L’échantillonnage réalise donc une discrétisation dans le temps, tandis que la conversion 
analogique-numérique réalise une discrétisation en amplitude. 

 

Figure.1.1 :  Échantillonnage et conversion analogique numérique d’un signal. 

1.2 PRINCIPES FONDAMENTAUX DE L’ÉCHANTILLONNAGE DES SIGNAUX 

1.2.1 Peigne de Dirac 

L’échantillonnage d’un signal temporel s(t) consiste à transformer celui-ci en une suite 
discrète s(nTe) de valeurs prises à des instants nTe. Te est appelée période d’échantillonnage. 
Les instants nTe sont appelés les instants d’échantillonnages. Pratiquement, échantillonner un 
signal revient à le multiplier par une fonction d’échantillonnage p(t), nulle partout, sauf au 
voisinage des instants nTe. Cette fonction, qui porte souvent le nom de peigne de Dirac, est 
représentée sur la Figure 1.2.  

 
Figure.1.2 :  Fonction d’échantillonnage. 
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Le résultat d’une opération d’échantillonnage, est représenté sur la Figure 1.3: 

                                                  *s t p t s t  

 

Figure.1.3 :  Échantillonnage d’un signal quelconque. 

L’échantillonnage d’un signal temporel s(t) consiste donc à transformer celui-ci en une 

suite discrète sk=s(k) de valeurs prises à des instants kTe. Ici k et n sont des entiers naturels (k = 0, 
1, 2, …n) et Te est appelée période d’échantillonnage :  

Soit la suite :                                  0 , , 2 ,.....e e es s T s T s nT  

Que l’on note en générale :       *
0 1 2, , ,..., nS t S S S S  

Ou encore :                                 0 1 2, , ,..., ns k S S S S  

1.2.2 Théorème de Shannon 

 Un des objectifs essentiels de l’échantillonnage consiste à ne pas perdre d’information lors 
de la discrétisation dans le temps, ce qui peut se traduire par le fait qu’il doit être possible, à partir 
du spectre du signal échantillonné, de reconstituer simplement celui du signal original. Un simple 
coup d’œil au spectre |S*(f)| nous montre que cela est possible s’il n’existe aucun recouvrement 
entre les différents segments de spectre (Figure.1.4). 

 

Figure.1.4 :  Spectre d’un signal échantillonné. 

 
 Si 2B est la largeur spectrale du signal s(t), autrement dit sa limite fréquentielle supérieure, 

le premier segment décalé, dans le spectre de s* (t), qui se trouve centré sur la fréquence fe, s’étend 

de  fe - B  à  fe + B. La condition de non recouvrement est donc, de toute évidence :                                              

                                                        eB f B       

                                           Soit :    2ef B  

Cela constitue le théorème de Shannon qui peut également s’énoncer de la manière suivante : 

   Pour préserver, lors de son échantillonnage, l’information contenue dans un signal, la 

fréquence d’échantillonnage fe doit être supérieure au double de la largeur spectrale du signal. 
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1.3 EXEMPLES DE SIGNAUX ÉCHANTILLONNÉS SIMPLES 

1.3.1 Impulsion unité 

On définit l’impulsion unité échantillonnée par le signal : 

                                                                           * 1,0,0,...,0t   

Autrement dit :                                             
 
 

*

*

1 0

0 0

e

e

nT pour n

nT pour n et n





  


  
   

La Figure 1.5 propose une représentation schématique de cette impulsion unité.  

 

Figure.1.5 :  Impulsion unité. 

1.3.2 Echelon unité 

On définit l’échelon unité échantillonné par le signal : 

                                                                         * 1,1,1,...,1u t 
 

Autrement dit :                                            
 
 

1 0

0 0

u k k

u k k

  


 
   

La Figure 1.6 propose une représentation schématique de cet échelon unité. 

 

Figure.1.6 :  Echelon unité. 

Cet échelon unité n’est rien d’autre que la somme d’impulsions unités décalées dans le temps : 

                                                                 * * * * 2 ...e eu t t t T t T       
 

Soit :                                                    * *

0
e

k

u t t kT




   

On pose parfois :                                 *
e kt kT  
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Ce qui nous conduit à la notation :      *

0
k

k

u t 




  

1.4   TRANSFORMÉE EN Z DES SIGNAUX ÉCHANTILLONNÉS 

1.4.1 Définition 

 Soit s(t) un signal continu quelconque que l’on échantillonne à une fréquence fe (soit une 
période Te), en respectant, bien évidemment, le théorème de Shannon. 

On a :                                       *
0 1 2, , ,...., ns t s s s s  

Ou encore :                              0 1 2, , ,...., ns k s s s s  

 Cette suite n’est rien d’autre que la somme d’impulsions unités décalées dans le temps et 
multipliées, chacune, par le coefficient sk : 

                                                      * * * *
0 1 2 2 ...e es t s t s t T s t T         

                                                  * *

0
k e

k

s t s t kT




   

                                                 *

0
k k

k

s t s 




  

 Nous pouvons toujours calculer la transformée de Laplace de s*(t) : 

                                                     * *

0
k k

k

S p s p




   

Dans cette expression,  *
k p  représente la transformée de Laplace d’une impulsion unité à 

l’instant kTe, représentée sur la Figure 1.7. 

 

Figure.1.7 :  Impulsion unité à l’instant k. 

Par définition :                                   * *

0

pt
k kp t e dt

        

En appliquant le théorème du retard et en nommant  *
k p  la transformée de Laplace de 

l’impulsion unité :                              * *
0

epkT
k p p e  

 

Avec :                                                 * *
0 00

ptp t e dt
     

De la même manière (en appliquant le théorème du retard pour  *
0 p ) : 

                                    * *
0 00

1ptp t e dt
           car :       * 1,0,0,...,0t   
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Il vient alors :                                               * epkT
k p e   

D’où :                                                       *

0

epkT
k

k

S p s e






  

En posant epTz e , on définit la transformée en z du signal s(t) par : 

 
0

k
k

k

S z s z






  

La transformation en z peut être notée :    s t Z s t     

 La transformée en z d’un signal n’existe, bien évidemment, que si la somme qui la définit 

converge. On peut montrer que ce domaine de convergence est de la forme |z| > r avec r ∈ R.     

Par la suite, nous ne nous intéresserons qu’à des signaux pour lesquels on peut effectivement 

définir une transformée en z. 

1.4.2 Propriétés de la transformée en z 

          a)  Linéarité 

 Soit  1s t et  2s t , respectivement deux signaux quelconques possédant chacun une 

transformée en z,  1S z et  2S z . La transformée en z d’une combinaison linéaire 

   1 2s t s t  de ces deux fonctions est égale à    1 2S z S z  .  

         b)  Théorème du retard 

 Soit s(t) un signal quelconque possédant une transformée en z, S(z) et soit x(t) = s(t -aTe) 
correspondant au même signal retardé d’un temps aTe.  

 La transformée en z de s(t - aTe) est égale à :   ( ) aX z z S z  

        c)  Théorème de la valeur finale 

        Soit s(t) un signal quelconque possédant une transformée en z, S(z). Soit sk la suite 
échantillonnée correspondant au signal s(t). Le théorème de la valeur finale permet de connaître la 
valeur vers laquelle tend la suite sk lorsque k → +∞, autrement dit lorsque t → +∞. 

                                                              1

1
lim lim 1k

k z
s z S z

 
     

        d) Multiplication par le temps 

 Soit s(t) un signal quelconque possédant une transformée en z, S(z). Soit x(t) le signal défini 
par x(t) = t·s(t). Alors :                                                 

                                                            
 

( ) e

dS z
X z zT

dz
 

 

         e) Changement d’échelle 

 Soit s(t) un signal quelconque possédant une transformée en z, S(z). Soit sk la suite 
échantillonnée correspondant au signal s(t). Soit xk la suite d’échantillons définie par : 
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                                                             0k
k kx a s avec a   

 Le signal x(t) correspondant à la suite xk  possède une transformée en z telle que : 

                                                              ( )
z

X z S
a

   
   

1.5 FONCTION DE TRANSFERT EN Z 

1.5.1 Relations entre échantillons de sortie et échantillons d’entrée : équation récurrente   

 La modélisation initiale d’un système à temps discret conduit souvent à l’écriture d’une 
équation récurrente entre différents termes des séquences d’entrée et de sortie. La forme générale 
d’une équation récurrente linéaire peut être donnée par : 

               1 1 0 1 1 01 ... 1 1 ... 1n n m ma s k n a s k n a s k a s k b e k m b e k m b e k b e k                   

 Par hypothèse 0na   et n est appelé l’ordre du système.  Le système est dit causal si les 

sorties dépendent uniquement des évènements passés.  Pour cela il doit obligatoirement vérifier 
m n . Cette formulation de l’équation récurrente est bien adaptée au calcul numérique.  C’est la 
forme sous laquelle seront présentés les algorithmes de commande des procédés.  

1.5.2 Définition de la fonction de transfert en z 

 De la même manière que l’on associe à un système à temps continu, une fonction de 
transfert, par application de la transformation de Laplace à son équation différentielle, on peut 
associer à un système à temps discret, une fonction de transfert en z, par application de la 
transformation en z à son équation récurrente. Sous l’hypothèse que les conditions « initiales » 

sont nulles (            0 1 ... 1 0 1 ... 1 0s s s n e e e m          ) il vient la relation suivante :  

                                                1 1
0 1 1 0 1 1... ...n n m m

n n m ma a z a z a z S z b b z b z b z E z 
           

Soit encore :     
   N z

S z E z
D z

  

Avec :                                            
 
   

1
0 1 1

1
0 1 1

...

...

m m
m m

n n
n n

N z b b z b z b z
G z

D z a a z a z a z







   
 

     

      Qui est définie comme la fonction de transfert en z du système. Dans le cas général ou les 
conditions initiales sont non nulles la représentation en z du système s’écrit plus exactement : 

                                                            
     

 
N z I z

S z E z
D z D z

   

 Où le polynôme I(z) ne dépend que des conditions initiales. Il influe sur la sortie du système 
sans modifier le comportement dû au signal d’entrée U(z). 
  La factorisation du numérateur et du dénominateur conduit à la forme pôles, zéros, gain 
suivante :                                      

                                                          
    

1 1

1 1

....

....
mm

n n

z z z z z zb
G z

a z p z p z p

  


    
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Avec :      
1,..., 1,...,: : :n j m

m

n

i

b
pôles zéros k gain

a
p z    

 Par définition les pôles du système sont les racines du polynôme dénominateur et les zéros 
du système sont les racines du polynôme numérateur. Les uns et les autres sont par défaut des 
nombres soit réels soit complexes.  

1.6 TRANSFORMÉE DE FOURIER À TEMPS DISCRET 

1.6.1 Définition 

 Soit s(t) un signal continu quelconque que l’on échantillonne à une fréquence fe, en 
respectant, bien évidemment, le théorème de Shannon. Soit S(z) sa transformée en z. 

Rappelons que :                                   *

0

e

n
pkT

k
k

S p s e



  

Et que la transformée en z a été obtenue en posant epTz e  :  

                                                            
0

n
k

k
k

S z s z



  

 Exactement comme nous pouvons calculer la transformée de Fourier d’un signal à temps 

continu en posant p j , nous pouvons tout autant poser e epT j Te e  à condition, bien sûr, que 

la somme, ainsi transformée, converge vers une valeur finie, ce que nous supposerons. On obtient 
alors :  

                                                             *

0

e

n
j kT

k
k

S j s e  



     

Ou encore :                                           2

0

e

n
j k f f

k
k

f s e  



  

  La fonction  f est appelée transformée de Fourier à temps discret du signal sk. Son 

module représente, bien sûr, le spectre du signal échantillonné. 

1.6.2 Exemple 

  Soit s(t) le signal défini par ( ) ts t e  pour 0t  . La transformée en z de ce signal, 

échantillonné à la fréquence fe a pour expression :  

                                                           
eT

z
S z

z e
  

Posons :      
ej Tz e   

On obtient :                                        
e

e e

j T

j T T

e
f

e e



 
  

Calculons à présent le spectre du signal :  

                         
1

cos cos sin sin

e

e e

j T

j T T

e e e e

e
f

e e T T j T T




  

   
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                                     
   2 2

1

cos cos sin sine e e e

f
T T T T


 


  

 

                                      1

2 2cos cos 2sin sine e e e

f
T T T T


 


   

                                     
   2

1 1

2 2cos 1 1
2 2sin

2
e e

f
T T


 

 
   

 
 

 

                                          
1 1

1 2 1
2 sin 2 sin

2 2
e

e

f
T f

f


 

 
   

 Nous pouvons tracer ce spectre, en prenant soin de se souvenir que le signal a 
obligatoirement été échantillonné en respectant le théorème de Shannon, autrement dit en 

considérant que le signal original possède une largeur spectrale 2eB f .  

 On tracera donc ce spectre pour 0 2ef f 
 

Comme :                                        
 2 11 1

2 2 2 2e e e

f

f f f

 
  

 

On a :                                            
   

1
2 1

2sin
2 e

f
f

f





  

Si fe est suffisamment grande, il s’agit d’un spectre qui décroît de    max

1
1

2sin
2

e

e

f

f

    jusqu’à 

environ de ½ (Figure 1.8). 

  En réalité, le spectre possède un minimum pour
 2 1

2 2e

f

f

 


 , autrement dit pour une 

fréquence déjà très élevée et voisine de fe/2. 

 

 

 

Figure.1.8 :  Spectre du signal.  
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1.7 COMPORTEMENT FRÉQUENTIEL DES SYSTÈMES ECHANTILLONNÉS 

1.7.1 Principes généraux 

  Considérons un système de fonction de transfert en z égale à G(z) sollicité par un signal 
d’entrée possédant une transformée en z, E(z) et délivrant un signal de sortie de transformée   en z, 
S(z) (Figure 1.9). 

 
Figure.1.9 :  Schéma général d’un système échantillonné. 

 Le système est régi par l’équation : S(z) = G(z) E(z)     

  En posant ej Tz e  , on obtient      e e ej T j T j TS e G e E e     

  Les termes  ej TE e  et  ej TS e  représentent respectivement les transformées de Fourier des 

signaux à temps discret d’entrée et de sortie. Par conséquent,  ej TG e   représente le 

comportement fréquentiel du système : il s’agit de sa fonction de transfert en fréquence. 
 
1.7.2 Exemple 

 On considère un système échantillonné régi par la relation de récurrence : 

                                                          1
1

2
s k e k s k  

 

 En appliquant la transformée en z à cette équation, on obtient : 

                                                         11

2
S z E z z S z     

D’où :                                            
  1

0,5

1 0,5

S z
G z

E z z
 

  

Soit :                                              
0,5 0,5

1 0,5 1 0,5 cos sinej T

e e

G
e T j T

  
    

                                                    
 2 2

0,5

1 0,5cos 0,25sine e

G
T T


 


   

Finalement :                                0,5

1,25 cos e

G
T





  

Ou encore :                               
  0,5 0,5

1,25 cos 2
1,25 cos 2e

e

G f
fT f

f

 
 

 
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Il convient de tracer cette fonction pour f variant de 0 à fe/2. Sur cet intervalle, cos2πfTe 
  décroît de 

1 à -1. G(f) est donc une fonction strictement décroissante. 

On a :                                            max

0,5
(0) 1

0,25
G G  

 

Et :  min

0,5 0,5 1
( )

2 31,25 cos 2,25
efG G


   

  

La Figure 1.10 représente le diagramme de gain fréquentiel du système. 

 

Figure.1.10 :  Diagramme de gain du système. 

Remarque : A contrario des systèmes à temps continus, l’usage, pour les systèmes échantillonnés, 
consiste à tracer la courbe de gain directement en coordonnées cartésiennes linéaires. 

1.8 RELATIONS ENTRE LES MODÈLES À TEMPS CONTINU ET À TEMPS DISCRET 

1.8.1 Problématique 

  Considérons un système à temps continu modélisé par sa fonction de transfert G(p) (Figure 

1.11). Nous possédons une bonne connaissance de ce type de modèles et il est tout à fait légitime 

de s’interroger sur l’existence d’un système échantillonné possédant les mêmes caractéristiques, 
c’est-à-dire le même comportement temporel et le même comportement fréquentiel. 

 

Figure.1.11 :  Recherche d’une équivalence temps continu – temps discret. 

  Le système échantillonné G(z) sera réputé équivalent au système G(p) si, soumis à un signal 

d’entrée E(z) correspondant à l’échantillonnage du signal continu e(t) représenté par E(p), il 

délivre à sa sortie un signal S(z) correspondant à l’échantillonnage du signal s(t) qui aurait été 

délivré par le système G(p). 
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1.8.2 Équivalence à la dérivation 

          a) Définition 

  Une fonction de transfert en temps continu est issue d’une équation différentielle linéaire à 
coefficients constants. Cette équation est formée de dérivées successives des signaux d’entrée et 
de sortie. Un des moyens les plus simples d’effectuer le lien entre une représentation en temps 
continu et en temps discret est de considérer que la variation dx/dt en temps continu correspond à 
la variation du signal entre deux instants d’échantillonnage : 

                                                         
   1

e

x k x kdx

dt T

 


 

  Cette équivalence est d’autant plus vraie que la fréquence d’échantillonnage est grande. 
Or la transformée en z de l’expression de droite est : 

                                                        
      11 1

1
e e

x k x k
Z X z z

T T
  

  
   

 De même, le terme dx/ dt a pour transformée de Laplace : pX(p). 
Par conséquent, l’équivalence naturelle entre une fonction de transfert continue en p et sa fonction 
de transfert échantillonnée en z est : 

                                                                      

11

e

z
p

T




 

Remarque : La connaissance précise de la fréquence d’échantillonnage est nécessaire pour 
disposer de cette équivalence.  
         b) Exemple  

         Soit un système à temps continu du premier ordre de fonction de transfert en boucle ouverte 
G(p) définie par :  

                                                       
1

K
G p

Tp


  

Effectuons la transformation proposée : 

                                                     
 

1
11 11

e ee

K K
G z

T Tz zT
T TT




 
     
 

 

Comparons à présent les courbes de réponse fréquentielle de ces deux systèmes.  
À titre exceptionnel, nous tracerons le gain fréquentiel du système à temps continu G(p), non pas 
sur un diagramme de Bode, mais sur un diagramme à coordonnées cartésiennes linéaires afin de 
pouvoir comparer directement les deux courbes. 
        Pour le modèle à temps continu, on a : 

                                                    
2 21

K
G G

T
 


 

  

Traçons cette courbe en pointillés sur la Figure 1.12. Rappelons qu’une inflexion se produit à la 
fréquence f = 1/2πT et notons, par ailleurs, que : 

                                                                                  0G K  
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                                           2 2 22 1 4
e

e

f K
G

T f
   
  

 

Pour le modèle à temps discret, on a :    

 
2 2

21 1 1 cos
ej T

e
e e

e e e e

K K
G

T T T T T Te TT T T T T T








 
               
     

 

Notons que :                    
2 22 1 212

1

e

e

e
e

f K K K
G

T Tf
T

T
T

          
 

 

 

(Cette valeur est nettement supérieure à celle fournie par le modèle à temps continu) 

Et que :                                      
2 2

0
2

1 1
e e e e

K
G K

T T T T

T T T T

 
     
        

     

 

(Cette valeur est identique à celle fournie par le modèle à temps continu). 
  Traçons (en trait plein) la courbe représentative du gain du système à temps discret sur la 
même figure.  
 La conclusion est évidente : les deux courbes coïncident aux basses fréquences mais 
l’équivalence proposée devient de moins en moins précise au fur et à mesure où l’on se rapproche 
de fe/2. 

Remarque : Rappelons que la courbe de réponse d’un système à temps discret n’a de sens que sur 

l’intervalle 0,
2

ef 
    

 

Figure.1.12 :  Comparaison des deux modèles. 

1.8.3 Équivalence à l’intégration 
 

              a) Définition 

 L’équivalence à l’intégration, appelée également transformation bilinéaire propose une 

correspondance plus précise que l’équivalence à la dérivation. Nous mentionnons ici cette 

équivalence sans la justifier :                     
 
 

1

1

2 1

1e

z
p

T z









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              b) Exemple 

 Reprenons notre système à temps continu du premier ordre de fonction de transfert en 
boucle ouverte G(p) définie par : 

                                                            
1

K
G p

Tp


  

Effectuons la transformation proposée : 

                        
 

 
 

 
   

1

1
1 1

1

1

22 1 1 11
1 e

e

K zK
G z

Tz z zT T
T z



  




 

     
  

 

Soit :                                          
   

 1 1

1 1 1

1 1

2 2 21 1 1 1
e e e

K z K z
G z

T T Tz z z
T T T

 

  

 
 

       
 

 

Remarque : La connaissance précise de la fréquence d’échantillonnage est toujours nécessaire 
pour disposer de cette équivalence. 

1.8.4 Équivalence modale 

  Dans l’esprit de conformité entre les réponses impulsionnelles en temps continu et en temps 
discret, on peut proposer une approche modale de l’équivalence entre fonction de transfert en 
temps continu et en temps discret. Cette équivalence est basée sur la concordance des pôles entre 
les deux fonctions. On utilise alors la transformation : 

                                                               
i ep T

ip p z e    

  Toutefois, ce type d’équivalence possède l’inconvénient de ne traiter que des pôles des 
fonctions. Il est souvent nécessaire d’ajuster leurs numérateurs en fonction de critères particuliers. 
Les expressions fournies en annexe B correspondent à des fonctions de transfert que l’on a 
systématiquement adaptées pour que leurs gains statiques concordent. 

Ainsi :                                  
1 1 1

( ) ( )
i e

i e

p T

p T
i i

e
G p G z

p p p z e

  
        

De sorte que :                       
1 1 1

(0) (1)
0 1

i e

i e

p T

p T
i i

e
G G

p p e

  
        

1.8.5 Équivalence d’une association de plusieurs systèmes 

 On ne peut déterminer l’équivalent G(z) d’un système de fonction de transfert en temps 
continu G(p) que si ses signaux d’entrée et de sortie sont échantillonnés (Figure 1.13). 

 

Figure.1.13 :  Principe de l’équivalence Laplace – Z. 



                                                                                                                                      MODELISATION DES SIGNAUX ET DES  
CHAPITRE 1                                                                                                                             SYSTEMES ECHANTILLONNES  

                                                                                                                                                                                          16 
 

 Par conséquent, il est impossible, lorsque deux systèmes sont associés en cascade 

(Figure.1.14) de calculer l’équivalent de la fonction de transfert globale G0(p)= G1(p)G2(p) par la 

multiplication pure et simple de G1(z)G2(z). En effet, en cherchant l’équivalent G0(z) de G0(p), on 

suppose implicitement que seuls les signaux d’entrée et de sortie de G0 sont échantillonnés. Et 

lorsque l’on écrit G1(z)G2(z), on suppose que le signal sortant de G1 et entrant dans G2 est lui aussi 

échantillonné, sinon, on ne pourrait trouver ces deux équivalents. 

 

Figure.1.14 :  Principe de l’équivalence Laplace – Z pour une association en cascade. 

 En conclusion, on ne peut pas déterminer l’équivalent en z d’une association de plusieurs 

systèmes en multipliant les deux fonctions de transfert en temps continu, puis en cherchant 

l’équivalent de la fonction globale ; il faut impérativement calculer d’abord les fonctions de 

transfert en z de chaque système, puis multiplier ces fonctions de transfert en z pour obtenir la 

fonction de transfert échantillonnée de l’ensemble. 
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Chapitre 2 

 
Stabilité et performances des systèmes 
échantillonnés asservis 
 

 

2.1      MISE EN ÉQUATION DES ASSERVISSEMENTS ÉCHANTILLONNÉS 

2.1.1 Fonction de transfert en boucle fermée 

  Tout comme les systèmes continus, les systèmes échantillonnés peuvent être asservis 

selon le même principe de la boucle fermée (Figure 2.1). 

 

Figure.2.1 : Schéma général d’un système échantillonné asservi. 

La chaîne directe et la chaîne de retour sont modélisées par leurs fonctions de 

transfert en z et les signaux d’entrée et de sortie sont bien évidemment échantillonnés à une 

fréquence fe et possèdent chacun une transformée en z : E(z) et S(z). L’écart  t n’échappe 

pas à la règle. Soit  z sa transformée en z. 

Tout comme dans le cas des systèmes à temps continu, on définit les fonctions de 

transfert en boucle ouverte G(z) et en boucle fermée H(z) par : 

                  G z A z B z                                              

Et :                                                                 
   1

A z
H z

A z B z


  

Dans le cas d’une boucle à retour unitaire, on a B(z) = 1 et, par conséquent : 

                                                                          G z A z  

Soit :                                                               
 1

G z
H z

G z


  
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2.1.2 Relation temps continu – temps discret en boucle fermée 

Considérons un système à temps continu asservi, selon le schéma général de la Figure 2.2. 

 

Figure.2.2 : Schéma général d’un système à temps continu asservi 

Chacun des sous-systèmes constitutifs A(p) et B(p) possède un équivalent en temps 
discret A(z) et B(z), comme cela a été étudié au chapitre précédent. Ces équivalents supposent 
que chacun de ces sous-systèmes possèdent une entrée et une sortie échantillonnées (Figure 
2.3). 

 

Figure.2.3 : Conditions d’équivalence Laplace – Z 
 

  Si on se contentait, dans le schéma de la Figure 2.2, d’échantillonner uniquement le 
signal de consigne et le signal de sortie, on obtiendrait le schéma de la figure 2.4, mais, dans 
cette configuration, le système obtenu serait complètement différent de celui auquel on 
s’attend et qui est représenté sur la figure 2.5. En effet, il n’est pas possible de déterminer 
l’équivalent A(z) de A(p) si son signal d’entrée n’est pas échantillonné. Il est donc nécessaire 
de disposer d’un modèle dans lequel chaque signal est échantillonné. 

 

Figure.2.4 : Échantillonnage de la consigne et de la sortie 
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  La principale conséquence de cette constatation est le mode de calcul de la fonction de 
transfert en boucle fermée d’un système asservi à temps discret lorsque celui-ci est déterminé 
à partir d’un modèle à temps continu : il n’est pas possible de déterminer la fonction de 
transfert en z en boucle fermée à partir de l’équivalence de la fonction de transfert en boucle 
fermée en temps continue H(p). Il faut déterminer indépendamment les fonctions de transfert 
en z de chaque sous-système (figure 2.5) et calculer la fonction de transfert en boucle fermée 
H(z) à partir de l’expression : 

                                                                
   1

A z
H z

A z B z


  

 

Figure.2.5 : Schéma de l’asservissement échantillonné attendu 

2.2      STABILITÉ DES ASSERVISSEMENTS ÉCHANTILLONNÉS 

2.2.1 Critère mathématique de stabilité 

         a) Énoncé du critère 

 Pour les systèmes à temps discret, la définition de la stabilité reste la même : à une 
entrée finie doit correspondre une sortie finie. Considérons un système échantillonné défini 
par la fonction de transfert suivante : 

                                                
 

 

1
1 2 0

0 1 2 1
1 2

11 2

1

1
...

1 ...
1

p

p i
p i

qq
q

j
j

a z z
a a z a z a z

H z
b z b z b z

p z


  


  





   
 

    




 

Les zi et les pj sont respectivement les zéros et les pôles de la fonction de transfert. 

  Plaçons un échelon unité à l’entrée de ce système, soit :  
1

z
E z

z


  

On a alors :                                  
 

 

1
0

1

1

1

1
.

1
1

p

i
i

q

j
j

a z z
z

S z H z E z
z

p z










 






 

D’après le théorème de la valeur finale, on a :  

                                                 
 

 

1
0

1

1 1 1
1

1

1
1

lim lim lim lim ( )
1

p

i
i

qk z z z

j
j

a z z
z

s k S z H z
z

p z





   




 
            

 




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Or le système sera stable si et seulement si s(k) tend vers une valeur finie. 
  La fonction de transfert peut naturellement être décomposée en éléments simples :  

                                                                      
1

j

j

H z
p

z




 
 

 

  

Et il faudra qu’aucun de ces termes ne tende vers l’infini lorsque z → 1 pour assurer la 
stabilité du système. On sait par ailleurs que le domaine de convergence (donc d’existence) de 
la transformée en z est tel que |z| > r. Pour faire tendre z vers 1, il faut bien évidemment que 
le seuil de convergence r soit inférieur à 1. Le seul moyen de garantir qu’aucun terme de la 
décomposition en éléments simples ne diverge lorsque z tend vers 1 est donc de n’avoir que 
des pôles pj dont le module sera strictement inférieur à 1. 

Généralisons donc ce résultat : 
 Un système échantillonné est stable si et seulement si tous les pôles pj de sa fonction de 
transfert sont tels que |pj| < 1. On traduit souvent cette propriété par la proposition suivante 
qui concerne la position des pôles dans le plan complexe :  
  Un système est stable si et seulement si les pôles de sa fonction de transfert se trouvent 
tous à l’intérieur du cercle de rayon 1. 

  b) Exemple : stabilité en boucle fermée d’un système du premier ordre 

  On considère un système échantillonné de fonction de transfert en boucle ouverte G(z) 
placé dans une boucle à retour unitaire (Figure 2.6), avec : 

                                                                   11

b bz
G z

az z a 
   

Les paramètres b et a sont positifs. De plus, on supposera que a < 1. 

 Ce système correspond, en boucle ouverte, à l’équation de récurrence suivante : 

                                                                     1s k be k as k    

 

Figure.2.6 : Schéma d’un asservissement échantillonné à retour unitaire 

Étudions sa stabilité en boucle fermée : 

                                                 
   1 11

bz
G z bzz aH z

bzG z b z a
z a

  
  


 

 Le système est stable en boucle fermée si l’unique pôle de cette fonction de transfert est 

inférieur à 1 :                           1
1

a

b   
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2.2.2 Critère algébrique de Jury 

  Pour les systèmes échantillonnés d’ordre élevé ou possédant des paramètres variables, 
on peut montrer qu’il est impossible d’utiliser le critère mathématique, et c’est pour cela 
qu’un critère algébrique, dit de Jury, avait été introduit.  Le critère de Jury permet de 
diagnostiquer la stabilité d’un système sans avoir à calculer ses pôles. Il ressemble beaucoup 
au critère de Routh et est aussi simple à utiliser. 

a) Énoncé du critère 

Soit H(z) la fonction de transfert en boucle fermée d’un système échantillonné asservi : 

                                                 
1 2

0 1 2

1 2
0 1 2

...

...

p
p

q
q

a a z a z a z
H z

b b z b z b z

  

  

   


     

En multipliant le dénominateur de cette fonction de transfert par zq, on obtient : 

                                        
 

1 2
0 1 2

1 2
0 1 2

...

...

q p
p

q q q
q

z a a z a z a z N z
H z

b z b z b z b D z

  

 

   
 

                 

Remarque : Il faut s’arranger pour que b0 soit positif. 

 À partir de l’expression D(z) du dénominateur de H(z), ainsi placé sous la forme d’un 
polynôme en z, on construit un tableau similaire à celui du critère de Routh, de la manière 
suivante : 
  On place toute la suite de coefficients bj dans un tableau, sur une première ligne, dans 
l’ordre des puissances de z décroissantes, puis, sur une deuxième ligne, on place les mêmes 
coefficients mais en sens inverse. On effectue ensuite un calcul pour créer une ligne 
supplémentaire de q - 1 valeurs cj, avec : 

0j j q q jc b b b b    

  On dispose alors d’un tableau de trois lignes et on crée aussitôt une quatrième ligne 
avec la même suite de coefficients cj, mais placée en sens inverse : 

           

0 1 2

1 2 0

0 1 2 1

1 2 3 0

............

............

............

............

q

q q q

q

q q q

b b b b

b b b b

c c c c

c c c c

 



  

  

 La cinquième ligne est calculée à partir des deux lignes précédentes et cette fois, on 
calcule uniquement q - 2 valeurs d j selon l’expression : 

                                                           0 1 1j j q q jd c c c c     

 Plutôt que de retenir cette expression, il est préférable de visualiser l’opération qui est 
faite, sur le tableau (figure 2.7). 
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Figure.2.7 : Construction de la table de Jury 

 Une sixième ligne est automatiquement ajoutée au tableau en disposant les coefficients 
dj en sens inverse. On itère le processus de calcul jusqu’à ce qu’il ne reste que 3 termes sur 
une ligne (bien noter qu’à chaque série de calculs, on crée un terme de moins qu’il n’y en a 
sur les deux lignes précédentes). Le tableau définitif doit comporter 2q - 3 lignes. Le système 
est stable si toutes les conditions suivantes sont réunies simultanément : 

                                     

 
   

0

0 1

0 2

0 2

1 0

1 0 , 1 0

....

q

q

q

D

D si n est impair D si n est pair

b b

c c

d d

x x








 











 

Remarque : Il faut donc, en plus des conditions sur D(1) et D(-1), que sur chaque ligne créée 
de rang impair, la valeur absolue du premier terme soit inférieure à celle du dernier. 

b) Exemple : stabilité d’un système du second ordre 

Soit H(z) la fonction de transfert en boucle fermée d’un système échantillonné asservi. 

Soit :                                            
 2

1 N z
H z

az bz c D z
 

   

  Les coefficients a, b et c sont supposés strictement positifs. Comme le système est 
d’ordre 2, une seule ligne suffit (2q - 3 = 1). Le tableau se limite donc à la liste des 
coefficients dans l’ordre des puissances décroissantes : 

                                                                   a b c  
  L’analyse de la table nous conduit immédiatement à la condition : a > c. 
Par ailleurs, on doit avoir : 

                                                   
 
 
1 0 0

1 0 0

D a b c

D a b c

  

     

En conclusion, le système est stable si : 

                                                     0

0

a c

a b c

a b c


  
  
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2.2.3 Influence de la fréquence d’échantillonnage sur la stabilité 

          a) Mise en évidence 

 Nous allons tenter, à partir d’un exemple simple, de montrer que la stabilité d’un 
système échantillonné peut être grandement influencée par le choix de la période 
d’échantillonnage. Considérons un système de fonction de transfert en boucle ouverte G(p) 
placé dans une boucle à retour unitaire avec : 

                                                             
1

K
G p

Tp


  

 Si on se réfère à la table des équivalents Laplace – z (fournie en annexe B), le système 
échantillonné asservi qui possédera le même fonctionnement aura pour fonction de transfert :                                         

                              
     

 

1 1

1
1

e e

e e e

T T

T T

T T T

T T T

K e K e
G z

G z H z
G z

z e z e K e

 

  

   
    

      
  

    
 

 

Remarque : Bien noter que l’on n’a pas le droit de déduire la fonction de transfert 
échantillonnée en boucle fermée à partir de la fonction de transfert continue en boucle fermée. 

 Alors que le système en temps continu H(p) est toujours stable, le système échantillonné 
ne l’est pas toujours. En effet, H(z) possède un pôle dont le module est susceptible d’être 
supérieur à 1. 

  Ce pôle a pour expression : 1 1
e eT T

T Tp K e e
  

   
   

Le système échantillonné sera stable si et seulement si :  

                                         
1 1

e eT T

T TK e e
  

  
   

On peut donc avoir :  

                                        
1 1 1

e eT T

T TK e e K
  

    
      

Ce qui ne nous intéresse guère, 

Ou bien :                           1
1 1

1

e

e

e

T
T T
T

T

T

e
K K e K

e







  


 

  Le système échantillonné peut donc être instable : pour une période d’échantillonnage 
donnée, il existe une limite supérieure du gain statique qui délimite le domaine stable. Si c’est 
le gain statique qui est fixé, on a: 

                                        1 1 1 1
e eT T

T TK K e K e K
 

    
 

                               
1 1 1

ln ln
1 1 1

eT

eT
e

TK K K
e T T

K T K K

   
  

     
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La période d’échantillonnage doit donc être inférieure à une valeur qui dépend des paramètres 
du système. Autrement dit la fréquence d’échantillonnage doit être supérieure à un certain 
seuil. 
  Remarque : Il s’agit là d’un résultat important : en automatique, la fréquence 
d’échantillonnage n’est pas uniquement dictée par le théorème de Shannon (d’ailleurs il n’est 
pas toujours possible de connaître a priori les spectres des signaux dans le système) mais 
aussi par les caractéristiques du système. 

b) Choix de la fréquence d’échantillonnage 

 La règle traditionnellement adoptée par les automaticiens, en matière de choix de la 
fréquence d’échantillonnage consiste à évaluer la bande passante fpas du système asservi et de 
choisir une fréquence d’échantillonnage telle que : 

                                                            
6 25pas e pasf f f  

  On rappelle que la bande passante est définie comme la limite supérieure de la plage de 
fréquences pour lesquelles le gain est constant à 3 dB près. 

2.3  ASSERVISSEMENTS CONTINUS COMMANDÉS OU CORRIGÉS EN TEMPS DISCRET 

2.3.1 Définition 

  Les systèmes asservis comportent assez souvent à la fois des éléments fonctionnant à 
temps discret et d’autres qui fonctionnent à temps continu. Parmi ces systèmes, on rencontre 
notamment des asservissements de systèmes continus pour lesquels on envisage une 
correction par calculateur. Dans ce cas, les signaux de consignes et de sortie sont continus ; 
seuls les signaux entrants et sortant du correcteur sont échantillonnés (Figure 2.8). 

 
Figure.2.8 : Asservissement continu avec correction numérique 

  Dans d’autres cas, l’asservissement complet d’un système continu est piloté par un 
signal échantillonné (Figure 2.9). 

 
Figure.2.9 : Asservissement continu commandé par un signal échantillonné 
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2.3.2 Interfaçage entre un système discret et un système continu 

  Un problème subsiste dans les deux cas que nous venons de mentionner : la connexion 
d’un système échantillonné vers un système à temps continu n’est a priori pas possible. En 
effet, le signal délivré par le système C(z) est un signal identique à celui présenté sur la 
Figure.2.10. Il s’agit même, en général, d’une suite de nombres délivrés sous forme binaire. 
Ce type de signal est bien sûr incompatible avec l’entrée d’un système à temps continu. 

  Pour retrouver un signal « admissible », il est nécessaire de reconvertir la suite 
numérique en impulsions discrètes, au moyen d’un convertisseur numérique analogique, puis 
(et c’est cela qui transforme véritablement le signal en temps discret en signal continu) de 
procéder à un blocage du signal grâce à un système appelé bloqueur. 

  Le blocage consiste à maintenir la valeur de l’échantillon jusqu’à l’arrivée de 
l’échantillon suivant. Le signal x∗(t), après blocage, devient le signal continu représenté sur la 
figure 2.11. 

                              

    Fig. 2.10: Signal issu du correcteur               Fig. 2.11: Signal continu obtenu après blocage 

  On admettra qu’un bloqueur d’ordre 0 peut être modélisé par une fonction de transfert 
en temps continu égale à :   

                                                       0

1 epTe
B p

p


  

2.3.3 Première méthode d’étude simple : recherche d’un système continu équivalent 

  La première méthode d’étude du système consiste à rechercher le système continu 
auquel il est équivalent. Prenons l’exemple du système représenté sur la figure 2.8. Le 
correcteur C(z) possède sans aucun doute un équivalent en temps continu, soit C(p). 

 

Figure.2.12 : Équivalence en temps continu du système 

  Nous pouvons alors proposer un schéma équivalent en continu, en veillant à ne pas 
oublier le bloqueur d’ordre 0 qui, dans le modèle en temps continu, effectue l’interfaçage 
entre le correcteur et le système à commander (figure 2.12). 
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2.3.4 Deuxième méthode d’étude simple : recherche d’un système discret équivalent 

  On peut également étudier le système en recherchant le système à temps discret auquel 
il est équivalent. Reprenons l’exemple du système représenté sur la figure 2.8. Soit A(z) et 
B(z) les équivalents en temps discrets des fonctions de transfert A(p) et B(p). 
  Nous pouvons immédiatement proposer le schéma équivalent en temps continu (figure 
2.13), en veillant, surtout, à ne pas y inclure le bloqueur d’ordre 0 qui, dans le modèle en 
temps discret, n’a aucune raison d’être. 

 
Figure.2.13 : Équivalence en temps discret du système 

2.4     PRÉCISION DES ASSERVISSEMENTS ÉCHANTILLONNÉS 

2.4.1 Erreurs de position et de vitesse 

  On définit, pour les systèmes à temps discret, les mêmes performances que pour les 
systèmes à temps continu. Il en est ainsi de la précision des systèmes qui est ici, toujours 
définie par les notions d’erreurs de position et de vitesse. 

  Considérons un système échantillonné asservi de fonction de transfert en boucle ouverte 
G(z), placé dans une boucle à retour unitaire et représenté sur la figure 2.14. 

 

Figure.2.14 : Schéma d’un asservissement échantillonné à retour unitaire 

On définit l’erreur de position p  par :  limp
k

k 


 ,   pour une entrée en échelon unité  

  En appliquant le théorème de la valeur finale, on obtient : 

                                                                  
1

1
limp
z

z
z

z
 



           

Or :                         z E z S z E z G z z    
             d’où :           

 1

E z
z

G z
 

  
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 On a donc :           
 
 1

1
lim

1p
z

E zz

z G z




                   

Comme le signal d’entrée est un échelon unité, on a :  

                                                   1

1
lim

1 1p
z

z
E z

z G z




 
      

        

On définit également l’erreur de vitesse v  par :  limv
k

k 


      pour une entrée en rampe    

On a toujours :   
 
 1

1
lim

1p
z

E zz

z G z




          

Avec cette fois :            

                                             
     2 1

lim
1 11

e e
v

z

zT T
E z

z G zz




 
    

      
 

2.4.2 Précision d’un système échantillonné du premier ordre 

  On considère un système échantillonné de fonction de transfert en boucle ouverte G(z) 
placé dans une boucle à retour unitaire (figure 2.13), avec : 

                                                        1
0 0 1

1

b bz
G z avec b et a

az z a  
   

  Nous savons déjà (paragraphe 2.2.1 – b) que le système est stable en boucle fermée si 
l’unique pôle de la fonction de transfert en boucle fermée est inférieur à 1.   

  Soit :                                     
1

1

a

b                   

a)  Calcul de l’erreur de position 

  L’erreur de position de ce système asservi a pour expression :  

                                                              1 1

1

1 1
lim lim

1 1
1

p
z z bG z

az


 



 
   

       
 

    

Soit :                                                     1 1

1 1
lim lim

1 11
p

z z

z a a

bz b z a b a
z a


 

 
    

          
 

  

  Remarque : Compte tenu de la condition de stabilité, le dénominateur de cette 
expression ne peut être nul. 

  Cette erreur de position est nulle, autrement dit le système est parfaitement précis en 
boucle fermée, si a = 1, donc si la fonction de transfert en boucle ouverte G(z) possède un 
pôle égale à 1. 
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b) Calcul de l’erreur de vitesse 
L’erreur de vitesse du système asservi a pour expression :  

                                               
 

1
lim

1 1

e
v

z

T

bz
z

z a




 
 
 

        

        

Soit :                                                   
 

   1
lim

1 1
e

v
z

T z a

z z b a




 
  

      
 

L’erreur de vitesse d’un système du premier ordre placé dans une boucle d’asservissement est 
donc infini, sauf si a = 1, auquel cas : 

                                                          
 

   1

1
lim

1 1 1
e e

v
z

T z T

bz z b




 
  

      
 

c) Généralisation 

  La présence d’un pôle égal à 1 dans la fonction de transfert en boucle ouverte assure 
donc une bonne précision statique mais n’assure pas une bonne précision dynamique. 
Considérons à présent un système de fonction de transfert en boucle ouverte G(z) quelconque 
de la forme : 

                                                         
 

 
1

1
.

1
n

G z A z
z


  

  Un tel système possède n pôles égaux à 1. On aussi dit que la fonction de transfert en 

boucle ouverte est constituée, notamment, de n intégrateurs, étant donné que la forme  
1

1

1 z
 

correspond à une constante multiplicative près à l’intégration 1

p
. 

 L’erreur de position de ce système en boucle fermée a pour expression : 

   
 

 
   1 1 1

1

11 1
lim lim lim

1 11
1

n

p n nz z z

n

z

A zG z z z A z

z


  



 
 

    
              

  

 

Quelle que soit la valeur de n supérieure ou égale à 1 : 0p  . 

 La présence d’au moins un intégrateur dans la fonction de transfert en boucle ouverte 
assure donc bien la nullité de l’erreur statique. 

 L’erreur de vitesse du système en boucle fermée a pour expression : 

                             
     

 

1

1 1

lim
1 1 1

lim 1
1

e e
v

z

nz

T T

z G z z A z
z

z




 

 
  

          
  
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Soit :                        
 

     
 

   

1

1 1

1 1
lim lim

1 1 1

n n

e e
v n nn nz z

T z T z

z z z A z z z A z




 

        
                

 

     1
1: lim 0

11
e e

v nz

T T
Si n

Az z A z




 
    
     

   

 
       

1
1

1 1

1
2 lim lim 1 0

11

n
ne e

v n nz z

T z T
Si n z

Az z A z





 

      
     

 

  En conclusion, la présence d’un intégrateur dans la fonction de transfert en boucle 
ouverte assure une erreur de vitesse finie d’autant plus faible que la période d’échantillonnage 
est faible. La présence d’au moins deux intégrateurs assure la nullité de l’erreur de vitesse. 
 
2.5    PERFORMANCES DYNAMIQUES D’UN SYSTÈME ÉCHANTILLONNÉ  

   Tout comme l’étude des systèmes à temps continu conduit à mettre en évidence des 
performances en boucle fermée telles que rapidité et limitation du dépassement, nous allons à 
présent nous intéresser à ces performances dynamiques dans le cas des systèmes à temps 
discret. 

2.5.1 Fonction de transfert échantillonnée équivalente à un système du second ordre 

  On considère un système à temps continu du second ordre, caractérisé en boucle 
ouverte, par une fonction de transfert G(p) telle que : 

                                                                          
  2

2

2
1

n n

K
G p

p p
 


 

 

  Nous nous limiterons à l’étude du cas j < 1, pour mettre en évidence les paramètres liés 
au temps de montée et au dépassement. Par ailleurs, nous savons déjà, que cette fonction 
possède dans ce cas deux pôles complexes conjugués : 

                                                    2 2
1 21 1n np j et p j                       

Soit :                                                
2

2

1 2 1 2

1 1
. .n

n

K
G p K

p p p p p p p p

  
     

Calculons à présent, à l’aide de la table d’équivalence fournie en annexe B, la fonction de 
transfert en z équivalente à G(p) :   

                                                
1 2

1 2

2

1 2

1 1 1 1
. .

e e

e e

p T p T

n p T p T

e e
G z K

p z e p z e


       
                 

Comme :  
2

1 2 np p   



                                                                                                           STABILITE ET PERFORMANCES DES SYSTEMES 
CHAPITRE 2                                                                                                                      ECHANTILLONNES ASSERVIS                    

                                                                                                                                                                                                 30 
 

On obtient :                               
  

1 2

1 2

1 1e e

e e

p T p T

p T p T

K e e
G z

z e z e

 


   

Notons au passage que les deux pôles de la fonction de transfert en z sont 1 ep Te et  2 ep Te             
et remplaçons pour finir p1 et p2 par leurs expressions : 

                                                
 

 2 2

22 2

1 2 cos 1

2 cos 1

n e n e

n e n e

T T
n e

T T
n e

K e e T
G z

z ze T e

 

 

 

 

 

 

  


    

2.5.2 Prévision des performances dynamiques 

          a) Principe 

  L’une des méthodes les plus simples consiste à rechercher l’équivalent en temps continu 
de la boucle d’asservissement en temps discret en prenant soin de ne pas oublier les bloqueurs 
d’ordre 0, si nécessaires. On évalue alors les performances dynamiques de ce système en 
temps continu en assimilant son fonctionnement à celui d’un système du second ordre. 
  Pour simplifier les calculs, on prend l’habitude d’effectuer une approximation sur la 
fonction de transfert du bloqueur d’ordre 0, approximation qui apparaît comme raisonnable si 
la fréquence d’échantillonnage est suffisamment élevée : 

                                                        2
0

1 1

1
2

ee pTpT

e

e
B p e

T pp


  


 

            b) Exemple 

  On considère le système échantillonné asservi représenté sur la figure 12.15 et soumis à 
un échelon unitaire ; la période d’échantillonnage est réglée sur Te = 0,2 s. 

 

Figure.2.15 : Asservissement continu commandé par un signal échantillonné 

On donne :                                         4

1
A p

p


  

Recherchons l’équivalent en temps continu de cette boucle d’asservissement en temps discret: 

un bloqueur d’ordre 0 est nécessaire pour assurer la commande du système A(p). On obtient 

alors le schéma équivalent de la figure 2.16. 
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La fonction de transfert en boucle ouverte de ce système en temps continu a pour expression : 

                                       
   

4 4

1 11 1
102

e

G p
T p p

pp

 
           

  

 

Figure.12.16 : Équivalence du système en temps continu 

Calculons la pulsation de coupure à 0 dB et la marge de phase de ce système : 

                                                       
2

2

10

1 1
100

G 




 
 

                                 
2 4 2

2 101
1 1 1 16 15 0

100 100 100
G

   
 

         
 

 

La seule solution réelle positive de cette équation est :   0 3,6c rad s   

  Par conséquent, en considérant les relations approchées à propos des performances des 
systèmes à temps continu, nous pouvons en déduire une estimation du temps de montée en 
boucle fermée : 

                                                                       
0

3
0,8m

c

t s


 
 

Calculons à présent la marge de phase : 

                                              0
0 0arctan arctan

10
c

c c

          
 

Soit :                                                       85 0,85o
BF      

  Ce coefficient d’amortissement en boucle fermée correspond à un dépassement de 
0,6%, autrement dit, le système devrait présenter un dépassement imperceptible. 
  En conclusion, nous considérerons que le système échantillonné initial possède pour 
performances dynamiques : 

                                                                    0,8mt s  

                                                                     0dep   

  Cette étude a par ailleurs permis de démontrer que le dispositif était caractérisé par une 
marge de phase relativement importante, montrant ainsi que le système est très stable en 
boucle fermée. 
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c) Validation des résultats obtenus 

   Considérons, pour valider les résultats obtenus précédemment, l’équivalent en z de la 
boucle d’asservissement étudiée (figure 2.17). 

          D’après la table d’équivalence : 

                                                               
 
4 1 e

e

T

T

e
A z

z e








  

 
Figure.12.17 : Modèle à temps discret de la boucle d’asservissement 

La fonction de transfert en boucle fermée a pour expression : 

                                                              
 

 
   

4 1

1 4 1

e

e e

T

T T

eA z
H z

A z z e e



 


 

     

Soit :                                                    0,72

0,1
H z

z


  

Or :                                                    
 
       0,72

0,1 0,72
0,1

S z
z S z E z

E z z
   

  

Soit :                                                       0,1 0,72z S z E z   

Ce qui correspond à l’équation de récurrence suivante : 

                                                               0,1 1 0,72 1s k s k e k     

Le système étant commandé par un échelon, la suite e(k) est connue et cette équation nous 
permet de calculer, échantillon par échantillon, les différentes valeurs de la suite s(k) (tab.2.1). 

t 0 0,2s 0,4s 0,6s 0,6s 1,0s 1,2s 

e(k) 1 1 1 1 1 1 1 

s(k) 0 0,720 0,792 0,799 0,800 0,800 0,800 

                                            Tableau.2.1 : Simulation de la suite d’échantillons 

  Nous y remarquons l’absence de dépassement perceptible (ce qui est tout à fait 
conforme au système continu équivalent) et pouvons y mesurer le temps de montée qui est 
tout à fait conforme aux prédictions calculées à partir de notre modèle. Nous pouvons 
également vérifier la valeur de l’erreur de position prévue par notre modèle :  

                                              1 1

1
lim lim

1 4 1

e

e e

T

p T Tz z

z e

A z z e e




  


 

     

Soit :                                    
1 0,82

0,2 20%
1 0,82 4 1 0,82p


  

  
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Chapitre 3 

 
Correction des systèmes échantillonnés 
asservis    
 

 
3.1    PRINCIPES GÉNÉRAUX 

3.1.1 Rappel du cahier des charges d’un asservissement 

         Les systèmes échantillonnés comme les systèmes à temps continu, doivent en général 
satisfaire à un cahier des charges qui impose, en boucle fermée, un certain nombre de 
performances (qui d’ailleurs sont les mêmes qu’en temps continu) : précision, rapidité, marge 
de stabilité et limitation du dépassement. 

3.1.2 Rôle du correcteur 

  Si l’on s’en tenait là, nous ne pourrions malheureusement que prédire et constater les 
performances (ou les contre-performances) de la boucle d’asservissement sans pouvoir agir 
sur celles-ci. Il y a peu de chance, alors, que le cahier des charges soit respecté. L’idée 
consiste, ici encore, à introduire dans la chaîne directe, en amont du système A(z), un 
dispositif supplémentaire de fonction de transfert C(z), appelé correcteur numérique et dont le 
rôle essentiel doit consister à modifier les performances du système initial (figure 13.2). Cela 
revient à dire que nous transformons les fonctions de transfert en boucle ouverte et en boucle 
fermée de manière à imposer à l’ensemble de fonctionner selon le cahier des charges voulu. 

 

Figure.3.1 : Schéma général d’un système échantillonné asservi et corrigé. 

  Si Gi(z) et Hi(z) sont les fonctions de transfert en boucle ouverte et en boucle fermée 

du système initial et Gc(z) et Hc(z) les fonctions de transfert en boucle ouverte et en boucle 
fermée du système corrigé, on aura : 

                                                     
   1i i

A z
G z A z B z H z

A z B z
 

  

Et :                                                   
     1c c

A z C z
G z A z B z C z H z

A z B z C z
 


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  Tout l’art de la correction des systèmes échantillonnés consiste à choisir la bonne 
fonction de transfert C(z) pour ce correcteur numérique de manière à régler chaque 
performance sur sa valeur requise, sans perturber, bien sûr, le fonctionnement du système. 
Ces corrections sont en général assurées par un calculateur. 

3.1.3 Correction numérique d’un système à temps continu 

  Très souvent, on choisit, pour des questions de souplesse et de précision, de corriger 
numériquement un système à temps continu. Le schéma de la boucle d’asservissement 
correspondante est représenté sur la figure 3.2. Un bloqueur doit, bien entendu, être intercalé 
entre le correcteur numérique et le système à commander. 

 
Figure.3.2 : Asservissement continu commandé et corrigé numériquement. 

           Dans ce cas, les techniques de recherche d’un équivalent de la boucle d’asservissement 
étudiées au chapitre précédent pourront s’appliquer, que ce soit un équivalent à temps continu 
ou à temps discret. 

3.1.4 Problèmes spécifiques liés aux correcteurs numériques 

         Dans le cas des systèmes à temps continus, il a été relativement facile d’identifier les 
trois actions correctives simples : action proportionnelle, action dérivée et action intégrale et 
visualiser immédiatement, par exemple sur un diagramme de Bode, l’influence que ce type 
d’action avait sur le comportement fréquentiel, donc sur les performances. 

          Les choses ne sont pas si simples lorsqu’il s’agit d’asservissements échantillonnés. En 
effet, les formes diverses et variées des équations de récurrence des systèmes posent parfois 
problème lorsqu’il s’agit de conclure à des résultats généraux. 

          Certes, on peut toujours présupposer un principe d’équivalence entre les actions 
correctives élémentaires en temps continu et la forme correspondante en z : 

Action proportionnelle :       C p K C z K    

Action intégrale :                  1

1 1

1
C p C z

p z
  


  

Action dérivée :                   11C p p C z z     

  Toutefois, il est hors de question, ici, d’imaginer corriger intuitivement un système 
échantillonné en introduisant telle ou telle action corrective élémentaire (hormis l’action 
intégrale qui, elle, est sans trop de surprises et qui améliore systématiquement la précision en 
boucle fermée). Ainsi, l’introduction du gain inférieur à 1 n’augmente pas obligatoirement la 
stabilité, de même que la rapidité n’est pas forcément affectée par l’introduction d’un 
dérivateur. 
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3.2 TENTATIVES D’ACTIONS CORRECTIVES SIMPLES 

3.2.1 Amélioration de la précision 

  Comme mentionné précédemment, peu de surprises ici. L’action intégrale améliore la 
précision du système, mais, attention, elle peut bousculer les autres performances, de manière 
souvent imprévisible (au sens de la perception temps continu que l’on a peut-être de cette 
action corrective). 

a)  Correcteur à action intégrale 

  L’étude menée au chapitre précédent à propos de la précision d’un système asservi à 
temps discret nous a conduit à la conclusion suivante : la présence, dans la fonction de 
transfert en boucle ouverte, d’un intégrateur (i.e. d’un pôle égal à 1) assure la nullité de 
l’erreur de position, c’est-à-dire la précision statique parfaite. Si ce pôle est au moins double 
(s’il y a au moins deux intégrateurs dans la chaîne directe), l’erreur de vitesse est nulle, 
autrement dit la précision dynamique parfaite est assurée. Par conséquent, pour améliorer 
simplement la précision, en boucle fermée, d’un système à temps discret, on peut choisir un 
correcteur de fonction de transfert égale à : 

                                                         
 11

n

K
C z

z


  

  On choisira n = 1 si le cahier des charges impose uniquement une condition de nullité 
de l’erreur de position et n = 2 si l’erreur de vitesse doit être nulle également. 

b) Conséquence sur les autres performances 

  Analysons au travers d’un exemple simple, l’influence de l’introduction d’un 
intégrateur sur le comportement global d’un asservissement. Soit un système à temps discret 
de fonction de transfert en boucle ouverte G(z) placé dans une boucle à retour unitaire, avec : 

                                                           1

2 2

1 0,5 0,5

z
G z

z z 
   

Soit, en boucle fermée :                     2

3 0,5

z
H z

z


  

Ce qui correspond à l’équation de récurrence :      0,17 1 0,67s k s k e k    
  Ce système est stable en boucle fermée puisque l’unique pôle de la fonction de transfert 
en boucle fermée est inférieur à 1. 

          Soit :                                     1

0,5
0,17 1

3
p    

Considérons les suites d’échantillons d’entrée (échelon unité) et de sortie (tableau 3.1) et 
représentons-les graphiquement (figure 3.3). 

 

e(k) 1 1 1 1 1 1 1 
s(k) 0.667 0.777 0.796 0.799 0.800 0.800 0.800 

Tableau.3.1 : Simulation de la suite d’échantillons 
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Figure.3.3 : Représentation temporelle du comportement du système en boucle fermée. 

  L’erreur de position a pour valeur : 

                                       1 1

1 1 1 0,5
lim lim 0,2 20%

21 1 0,5 21
0,5

p
z z zG z

z


 


    

  


 

Introduisons un intégrateur dans la chaine directe. On a, à présent :  

                       
2

1

2 2

1 0,5 1 0,5

K z z
G z

z z z z 
      avec  K = 1 dans un premier temps. 

Soit, en boucle fermée :               
2 2

2 2

2 2

1 0,5 2 3 1,5 0,5

z z
H z

z z z z z
 

      

Ou encore :                                                  1 2

2

3 1,5 0,5
H z

z z 
   

Ce qui correspond à l’équation de récurrence :        0,5 1 0,17 2 0,67s k s k s k e k      

  Les pôles de cette fonction de transfert (les racines de l’équation 23 1,5 0,5z z  ) se 

calculent aisément et on peut vérifier sans peine que leurs modules sont inférieurs à 1. La 
condition de stabilité est donc toujours vérifiée. 

 En effet :  22 4 1,5 6 3,75b ac        

                        1/2 1 2

1,5 3,75
0,41

6

j
p p p


   

 

  Toutefois, les modules de ces pôles sont plus proches de 1 que l’unique pôle du système 
non corrigé (qui était égal à 0,17). On peut donc en déduire que la marge de stabilité est 
légèrement diminuée par l’ajout du correcteur (elle reste néanmoins très confortable). 
  Construisons un tableau avec les suites d’échantillons d’entrée (échelon unité) et de 
sortie (tableau 3.2) et représentons-les graphiquement (figure 3.4). 

e(k) 1 1 1 1 1 1 1 
s(k) 0.667 1.000 1.056 1.028 1.005 0.998 0.998 

Tableau 3.2 Simulation de la suite d’échantillons 
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On note la présence d’un faible dépassement (environ 6 %) ce qui corrobore la légère perte de 
marge de stabilité et une rapidité accrue puisque le temps de montée correspond à 

l’échantillon k = 1, soit tm = Te. 

 
Figure.3.4 : Représentation temporelle du comportement du système en BF après correction. 

3.2.2 Compensation de la perte de stabilité par placement des pôles 

  Reprenons le système que nous venons d’étudier en ajoutant un gain K dans la chaîne 
directe en plus de l’intégrateur. On a donc maintenant : 

                                                  
2

1

2 2
.

1 0,5 1 0,5

K z Kz
G z

z z z z 
       avec   1K   

Soit, en boucle fermée :            
2

2

2

1 2 1,5 0,5

Kz
H z

K z z


    

Cette fois, on a :                22 4 1,5 2 1 2 0,25 4b ac K K         
Pour augmenter la marge de stabilité, on doit chercher à réduire le module des pôles. Le 
discriminant restant négatif tant que K > 0,0625, nous pouvons partir du principe que les 
pôles resteront complexes conjugués : 

                                                 1/2

1,5 4 0,25

2 1 2

j K
p

K

 


  

Soit :                                                
 

   

2

1 2

1,5 4 0,25 1

2 1 2 2 1 2

K
p p

K K

 
  

   

  Il suffit de choisir une valeur de K qui correspond à une valeur souhaitée pour le module 
de chaque pôle, par exemple : 

                                              1 2 0, 25p p 
  pour  K = 3,5  

  On a alors :                       1 2

7

8 1,5 0,5
H z

z z 
   

ce qui correspond à l’équation de récurrence:  

                                                  0,1875 1 0,0625 2 0,875s k s k s k e k    
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e(k) 1 1 1 1 1 1 1 
s(k) 0.875 1.039 1.015 1.000 0.999 1.000 1.000 

Tableau.3.3 : Simulation de la suite d’échantillons 

  On note bien la présence d’un amortissement plus prononcé, ce qui correspond bien à une 
augmentation de la marge de stabilité 

 
Figure.3.5 : Représentation temporelle du comportement du système en B.F après correction. 

3.2.3 Action dérivée 

  Un correcteur numérique à action dérivée possède une fonction de transfert C(z) égale à : 

                                                             11C z K z 
  avec  K > 0 

  Analysons, au travers d’un exemple simple, l’influence d’un tel correcteur. Soit A(z) un 
système échantillonné placé dans une boucle de régulation à retour unitaire et précédé d’un 
correcteur à action dérivée, avec :     

                                                             
1

0,1
A z

z



 

La fonction de transfert en boucle fermée du système non corrigé est :  

                                                            
 

1

1 0,9i

A z
H z

A z z
 

   

L’unique pôle de cette fonction de transfert est :  
                                                                       1 0,9p    
Ce pôle possède bien un module inférieur à 1 mais sa valeur est proche de la limite 
d’instabilité ; le système est donc stable en boucle fermée mais mériterait sans doute d’être 
corrigé pour disposer d’une marge de sécurité plus confortable. L’équation de récurrence en 
boucle fermée étant : 

                                        0,9 1 1s k s k e k    
 

On peut aisément calculer et représenter graphiquement la suite des échantillons de sortie 
lorsque l’entrée est un échelon unité pour constater qu’effectivement, le système est stable, 
mais peu stable si l’on en croit le régime oscillatoire très peu amorti. De plus, il est très peu 
précis. 
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e(k) 1 1 1 1 1 1 1 1 1 
s(k) 0 1 0.1 0.910 0.181 0.837 0.247 0.778 0.300 

Tableau.3.4 : Simulation de la suite d’échantillons 

 
Figure.3.6 : Représentation temporelle du comportement du système en B.F avant correction. 

En présence du correcteur à action dérivée, on a : 

                                                         
 

11 1

0,1 0,1

K z K z
G z C z A z

z z z

 
  

   

Remarque : compte tenu des connaissances que nous avons acquises pour les systèmes à 
temps continu, nous nous attendons à ce que la stabilité du système soit améliorée. 

La fonction de transfert en boucle fermée du système corrigé est donc : 

                                                  
 

 
   

 
 2

1 1

1 0,1 1 0,1

G z K z K z
H z

G z z z K z z K z K

 
  

        

L’équation de récurrence correspondante est : 

                                                     0,1 1 2 1 2s k K s k Ks k Ke k Ke k        
 

Calculons les pôles de cette fonction de transfert. 

Cette fois, on a :                      22 4 0,1 4b ac K K       

Ce discriminant étant toujours positif, on a : 

                                                 
   2

1/2

0,1 0,1 4

2

K j K K
p

    
  

Soit :                                        
 2

1

0,1 0,1 4

2

K K K
p

   
  

Et :                                           
 2

2

0,1 0,1 4

2

K K K
p

   
  
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 On peut représenter, sur un même graphique, les variations de | p1| et de | p2| en fonction 
de K (figure 3.7).  
  Pour que le système soit stable, il faut que les deux pôles aient un module inférieur à 1. 

 
Figure.3.7 : Variations des modules des pôles en fonction du gain K. 

On en déduit donc :                   K < 0,55 

  Choisissons par exemple K = 0,4 puis calculons et traçons la suite d’échantillons en sortie 
du système lorsque celui-ci est soumis à un échelon unité (tableau 3.5 et figure 3.8).  

Dans ce cas, on a :           0,3 1 0,4 2 0,4 1 0,4 2s k s k s k e k e k        
 

e(k) 1 1 1 1 1 1 1 1 1 
s(k) 0 0.400 -0.120 0.196 -0.181 -0.107 0.110 0.067 -0.050 

Tableau.3.5 : Simulation de la suite d’échantillons 

 
Figure.3.8 : Représentation temporelle du comportement du système en B.F après correction. 

  Le système est effectivement plus stable puisqu’il converge vers une valeur finie 
beaucoup plus vite, ce qui est conforme au calcul des nouveaux pôles. 

  Soit :                                        1 0,5p 
 

  et :                                           2 0,8p 
 

  Toutefois, ce type de correction est inacceptable puisque l’erreur de position atteint à 
présent 100 %. 
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3.3     SYNTHÈSE D’UN CORRECTEUR NUMÉRIQUE PAR DISCRÉTISATION 
D’UN CORRECTEUR CONTINU 

3.3.1 Principe 

  La méthode que nous allons présenter s’adapte particulièrement bien aux problèmes de 
synthèse d’une correction numérique d’un asservissement continu (figure 3.9). Nous 
supposerons donc que nous cherchons à asservir un système de fonction de transfert A(p) au 
moyen d’un correcteur C(z). Pour simplifier, nous supposerons que la boucle est à retour 
unitaire. 

 
Figure 3.9 Asservissement continu corrigé numériquement. 

 
     La technique consiste à étudier cet asservissement en temps continu (comme représenté sur 
la figure 3.10) puis à rechercher le modèle numérique équivalent au correcteur continu C(p) 
que nous aurons calculé pour conférer au système les performances d’un cahier des charges. 

 
Figure 3.10 Modèle à temps continu de l’asservissement. 

  En théorie, il faut tenir compte de la présence du bloqueur dans l’étude en temps continu. 
Toutefois, une fréquence d’échantillonnage suffisamment grande peut nous permettre de le 
négliger. Dans ces conditions, on est ramené stricto sensu à l’étude du système en continu. 

  Le cahier des charges imposé au système nous amène au calcul classique de la fonction 
de transfert du correcteur et il suffit, ensuite, de rechercher un équivalent discret de cette 
fonction de transfert. Les équivalences qui peuvent être utilisées sont : 

       – l’équivalence à la dérivation :              

11

e

z
p

T




 

        – la transformation bilinéaire :              
 
 

1

1

2 1

1e

z
p

T z








  

        – la transformation bilinéaire :      i ep T
ip p z e    

Remarque : rappelons à propos de cette équivalence temporelle que les tables fournies en 
annexe proposent des équivalents qui sont spécifiquement adaptés pour conserver le gain 
statique du système. 
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On donne :                              1 1 1 i e

i e

p T

p T
i i

e
G p G z

p p p z e

  
        

De sorte que :                          1 1 1
0 1

0

i e

i e

p T

p T
i i

e
G G

p p z e

  
      

 

  On peut choisir de conserver la valeur du gain pour une autre fréquence que la fréquence 
nulle, notamment pour la fréquence autour de laquelle porte la correction du système. 

3.3.2 Exemple 

  On souhaite asservir un système continu de fonction de transfert G(p) en utilisant un 
correcteur numérique et en imposant le cahier des charges suivant : 

      – Marge de phase 45o   

      – Temps de montée 0,2mt s  

On donne :                   3

1
10

K
G p

p

  
 

        avec K > 0 réglable 

a) Synthèse du correcteur en temps continu 

       La valeur de K qui assure le temps de montée voulu se calcule en utilisant la relation 

approchée :                  0

3
15c

m

rad s
t

  
 

On a alors :                    0 1 5,86cG K   
 

Pour cette valeur de K, on obtient une marge de phase égale à : 

                                     0

15
3arctan 11

10c          
 

Il est donc nécessaire d’introduire un correcteur à avance de phase caractérisé par une 

remontée de phase de 34° centrée sur la pulsation 0c . 

Soit :                             1

1

aTp
C p

Tp




  

avec :                          max

1
arcsin 3,55

1

a
a

a
 

  
  

et :                              0

1
0,0355c T s

T a
    

d’où :                            1 0,124

1 0,035

p
C p

p




  

b) Calcul du correcteur numérique équivalent 

Utilisons, pour simplifier, l’équivalence à la dérivation :      
11

e

z
p

T



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Soit :                              

1

1

1
1 0,124

1
1 0,035

e

e

z

T
C z

z

T





   
 
   
 

 

Choisissons la fréquence d’échantillonnage de sorte qu’elle soit comprise entre 6 fois et 25 
fois la bande passante du système. Cette bande passante est telle que : 

 
2 2

5,86 1
2 2,8

24
1

100

pas pas

pas

G f f Hz
f




   
 
 
 
 

 

On choisit par exemple :    100 0,01e ef Hz T s    

Finalement :                  
 

1

1

1 12,4 1 13,4 12,4

4,5 3,51 3,5 1

z z
C z

zz





  
 

 
       

c) Validation des résultats 

  Validons ces résultats, bien évidemment en recherchant le modèle à temps discret 
équivalent à l’ensemble de l’asservissement. Prenons l’équivalent le plus simple pour la 
fonction G(p), autrement dit l’équivalent à la dérivation :    

                                                           
 3 311

5,86 5,86

11 101
1

10 e

G z
zz

T


 
    
 

 

La fonction de transfert en boucle fermée est : 
    

                           
   

 
     31

5,86 13,4 12,4

1 11 10 4,5 3,5 5,86 13,4 12,4

C z G z z
H z

C z G z z z z


 

      

Soit :                    
     

1

31 1 1

5,86 13,4 12,4

11 10 4,5 3,5 5,86 13,4 12,4

z
H z

z z z



  




     

                          
1

1 2 3 4

78,5 72,5

6068 21066 27555 16050 3500

z
H z

z z z z



   




     

d’où l’équation de récurrence correspondante : 

             3,47 1 4,54 2 2,65 3 0,58 4 0,01294 0,01195 1s k s k s k s k s k e k e k          

  Tableau.3.6 : Simulation de la suite d’échantillons 

k 0 5 10 15 20 25 30 35 40 
t 0 0.05s 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

e(k) 1 1 1 1 1 1 1 1 1 
s(k) 0 0.400 -0.120 0.196 -0.181 -0.107 0.110 0.067 -0.050 
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Figure.3.11 : Représentation temporelle du comportement du système en B.F après correction. 

  Le temps de montée peut être repéré vers le douzième échantillon, soit tm ≈ 0,12 s.  

Par ailleurs, le dépassement, visiblement égal à 40 %, correspond à un coefficient 
d’amortissement en boucle fermé d’environ 0,3. 

On a alors :                                       0,3 30BF       

  Les performances constatées sont voisines des performances attendues, même si le 
système est un peu plus rapide et un peu moins stable que prévu. Ces différences s’expliquent 
par les nombreuses approximations que nous avons effectuées. Compte tenu de l’ensemble de 
ces approximations, le résultat obtenu est relativement bon. 

3.4 SYNTHÈSE D’UN CORRECTEUR NUMÉRIQUE PAR MÉTHODE POLYNOMIALE 

3.4.1 Principe 

  Les méthodes polynomiales figurent parmi les méthodes de synthèse de correcteurs 
numériques les plus utilisées. Elles sont en effet très souples et relativement simples à mettre 
en œuvre. Considérons un système échantillonné de fonction de transfert A(z) placé dans une 
boucle à retour unitaire en cascade avec un correcteur C(z) que l’on cherche à déterminer pour 
conférer au système complet, en boucle fermée, des performances dictées par un cahier des 
charges : précision, amortissement, rapidité, marge de stabilité. 

 

Figure.3.12 : Boucle d’asservissement échantillonné avec correcteur. 

  D’une manière générale, l’objectif de l’action corrective consiste à rechercher C(z) 
pour que cette boucle d’asservissement de fonction de transfert en boucle ouverte G(z) 
possède les caractéristiques attendues. 
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Figure.3.13 : Boucle d’asservissement équivalente. 

  La technique de la synthèse par méthode polynomiale consiste à corriger le système de 
sorte que G(z) corresponde à un système du second ordre, de fonction de transfert : 

                                   
 

 2 2

22 2

1 2 cos 1

2 cos 1

n e n e

n e n e

T T
n e

T T
n e

K e e T
G z

z ze T e

 

 

 

 

 

 

  


      

  (Voir chapitre 2, paragraphe 2.5.1.) 

  Dans ces conditions, la fonction de transfert en boucle fermée H(z) est aussi une 
fonction du second ordre : 

                                 
 

 2 2

22 2

1 2 cos 1

2 cos 1

BF n eBF nBF e BF

BF nBF e BF nBF e

TT
BF nBF e BF

T T
nBF e BF

K e e T
H z

z ze T e

  

   

 

 



 

  


    

  Nous savons que les performances en boucle fermée, pour un tel système, se traduisent 

par des conditions sur nBF  pour la rapidité et sur BF pour la marge de stabilité et, bien 

évidemment, pour l’amortissement. 

En effet :                                     
0

3 3
m

c nBF

t
 

 
 

et :                                            100

o

BF

 


 

En ce qui concerne la précision, il suffit que G(z) possède un pôle égal à 1 pour que l’erreur 
de position soit nulle. 

Toutes ces considérations nous permettent donc de déterminer les fonctions H(z) et 
G(z) idéales, du second ordre, qui possèdent les performances requises. Pour que notre boucle 
d’asservissement initiale (figure 3.12) possède elle-même ces performances, il suffit d’avoir : 

                                                       G z C z A z  

et donc, de placer dans la chaîne directe, le correcteur de fonction de transfert : 

                                                      
 

G z
C z

A z

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3.4.2 Exemple 

         Considérons le système échantillonné à une période Te = 0,2 s de fonction de transfert : 

                                          0,3

0,8

z
A z

z




  

  On souhaite placer ce système dans une boucle à retour unitaire et on veut que le 
système possède, en boucle fermée, les performances suivantes : 

0, 0,8 0,45p m BFt s et    (marge de phase d’un système continu équivalent égale à 
45° et dépassement de l’ordre de 20 %). 

  Construisons la fonction G(z) a priori : elle possède obligatoirement un pôle égal à 1 
pour garantir une erreur de position nulle. 

On a donc :                                               
    1

a
G z

z z b


   

d’où :                                         21 1

a a
H z

z z b a z b z a b
 

           

Or nous devons, avoir, pour garantir les performances exigées :       

                           
 

 2 2

22 2

1 2 cos 1

2 cos 1

BF n eBF nBF e BF

BF nBF e BF nBF e

TT
BF nBF e BF

T T
nBF e BF

K e e T
H z

z ze T e

  

   

 

 



 

  


    

avec:                                  0,45BF              et        
3

3,75 /nBF

m

rad s
t

  
 

d’où :                                                2

0,39

1,12 0,51
BFK

H z
z z


   

Identifions les deux fonctions de transfert en boucle fermée : 

                                                        

1 1,12 0,12

0,51 0,39

b b

a b a

   
      

Le gain statique en boucle fermée est bien sûr égal à 1 puisque l’erreur de position est nulle. 

                                                           
0,39

1 0,12
G z

z z


   

                                                         
 

 
   

0,39 0,8

1 0,12 0,3

G z z
C z

A z z z z


 

  
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Chapitre 4 
 
 
Représentation d’état des systèmes à temps 
discret  
 
 
 

4.1     PRINCIPE GÉNÉRAL 

  Tout comme les systèmes à temps continu, les systèmes à temps discret peuvent être 

placés sous forme de représentation d’état. Les deux formalismes sont très voisins. Deux 

approches traditionnelles sont souvent étudiées pour aborder la représentation d’état des 
systèmes discrets : la discrétisation des équations d’état continues et la représentation directe 
par analogie avec la représentation d’état en temps continu. C’est cette deuxième approche 
que nous avons privilégiée car elle permet de généraliser très rapidement les propriétés 

démontrées aux systèmes continus. 

4.1.1 Variables d’état en temps discret 

  Dans la représentation d’état en temps continu, les schémas fonctionnels des systèmes 

ne comportant que des intégrateurs et des gains, il était possible, à partir de tels éléments, 

de reconstruire n’importe quelle fonction de transfert. En temps discret, il est possible de 
décomposer un système en utilisant des gains et des opérateurs dits de décalage, de fonctions 

de transfert z-1. La figure 4.1 présente un exemple de système composé de tels éléments. On 

peut, dans un tel modèle, définir des variables d’état, que nous noterons xi(k) et qui 

représentent la valeur des signaux xi aux instants kTe, Te étant la période d’échantillonnage de 
tous les signaux présents dans le système. 

 

Figure.4.1 : Représentation d’état en temps discret. 

Remarque : Rappelons ici que l’équation X3(z) = z-1X2(z) se traduit, en représentation 
temporelle à temps discret par la relation x3(k + 1) = x2(k). D’où la dénomination d’opérateur 
de décalage. 



                                                                                                             REPRESENTATION D’ETAT DES SYSTEMES 
 CHAPITRE 4                                                                                                                                    A TEMPS DISCRET                                     

                                                                                                                                                                           48 
 

4.1.2 Modélisation du fonctionnement du système 

  Dans une représentation en temps discret, la possibilité d’exprimer l’état du système 
à un instant donné en fonction du signal d’entrée et en fonction de son « passé », autrement 
dit, de son état précédent, prend tout son sens. La forme générale pour un système mono-
entrée et mono-sortie des équations d’état en temps discret correspond donc à : 

                                                           
         
     

1 A B

C

x k x k e k

s k x k

   



 

La matrice de commande [A] est une matrice carrée, (B) est un vecteur colonne et (C) est 
un vecteur ligne. 

Remarque : pour un système d’ordre n, c’est-à-dire possédant n variables d’état, la 
première équation, dite de commande, correspond à un système de n équations : 

   

         
         

         

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

1 ....

1 ....

1 ....

n n

n n

n n n nn n n

x k a x k a x k a x k b e k

x k a x k a x k a x k b e k

x k a x k a x k a x k b e k

     


     


      

 

Si le système possède plusieurs entrées et plusieurs sorties : soit n le nombre de variables 
d’état, m le nombre d’entrées et p le nombre de sorties. Dans ces conditions, la matrice de 
commande est toujours une matrice n × n, [B] est une matrice n × m et [C] est une matrice 
p × n. Pour être complet, il faut tenir compte d’une possible relation directe entre entrées et 
sorties. La matrice [D], de dimensions m × p représente ce lien. Signalons pour finir que 
les coefficients des différentes matrices peuvent aussi être variables dans le temps (c’est-à-
dire s’exprimer en fonction de k). 

              On a alors :              
         
         

1 B

C D

Ax k k x k k e k

s k k x k k e k

          


        
 

On adopte fréquemment la représentation schématique de la figure 4.2 pour illustrer cette 
modélisation. Attention, dans cette représentation, les signaux sont en réalité des vecteurs 
de signaux à temps discret. 

 

Figure.4.2 : Représentation schématique d’une modélisation d’état en temps discret. 

Si les coefficients des différentes matrices sont constants, le système est dit invariant. 
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4.2    RÉSOLUTION DES ÉQUATIONS D’ÉTAT 

  Nous nous limitons ici à l’étude des systèmes invariants possédant une seule entrée et 
une seule sortie. Formulons l’hypothèse que l’état du système à l’instant 0 est connu et que 
la suite d’échantillons d’entrée l’est également entre l’instant 0 et l’instant k0-1. Résoudre 
les équations d’état revient à rechercher l’état du système à l’instant k0. Comme cet état 
sera déterminé sans tenir compte de la valeur de l’échantillon d’entrée à cet instant, on 
parle ici de prédiction de l’état du système. 

4.2.1 Résolution des équations d’état par discrétisation d’une solution continue 

  Soit le système d’équations d’état déterministe, à temps continu : 

                                            

     

     

dx t
Ax t Be t

dt

s t Cx t De t


 


  

 

Où :                  
 
 
 

, : un vecteur d'état

, : un vecteur de commande

, : un vecteur de sortie

x t nx

u t lx

y t mx

 

La solution s’écrit : 

                                        
       

     
0

e 0 e
t

A tAtx t x Be d

s t Cx t De t

   

 


 

  Pour discrétiser le système, il faut disposer un convertisseur numérique-analogique 
pour transformer le vecteur u(k) des séquences numériques d’entrée en vecteur de signaux 
à temps continu, et d’un convertisseur analogique-numérique pour transformer le vecteur 
des signaux de mesure en vecteur y(k) de séquences numériques (figure 4.3). 

 
Figure.4.3 : Discrétisation d’un système continu 

Soit Te la période d’échantillonnage. Le CNA est un bloqueur d’ordre zéro (BOZ) : 

                             , 1 ,e et kT k T e t e k       

On peut alors calculer la solution d’état aux instants d’échantillonnage : 

                              

       

       

       

0

0

1

1 e

1 e

1 e e

e

ee

e

ee

e e

T
A TAT

e e

T
A TAT

e e

AT AT
e e

x k T x kT e Be d

x k T x kT e d Be k

x k T x kT A I Be k





 









    

    

        



     



                                                                                                             REPRESENTATION D’ETAT DES SYSTEMES 
 CHAPITRE 4                                                                                                                                    A TEMPS DISCRET                                     

                                                                                                                                                                           50 
 

Soit :  

                                  
     
     

1x k Fx k Ge k

s k Cx k De k

  


 
 

Où                                 1;e eAT ATF e G A e I B    

4.2.2 Prédiction de l’état du système à un instant quelconque 

Procédons par itérations successives. On a : 

                                 

         
         

         

         
         

0 0 0

0 0 0

1 0 B 0

2 1 B 1

1 B 1

1 2 B 2

1 B 1

A

A

A

A

A

x x e

x x e

x i x i e i

x k x k e k

x k x k e k

  


 

    


     


   

 

Soit :                                  0 0 0 02 B 2 B 1A Ax k x k e k e k       

d’où :                               2

0 0 0 02 B 2 B 1A Ax k x k e k e k       

En remplaçant successivement les x(i), on obtient : 

                                      
0

0 0

1
1

0
0

0 BA A
k

k k i

i

x k x e i


 



   

  Le principe des itérations successives est très intéressant à utiliser dans le cas où l’on 
recherche l’évolution de l’état du système pour tout instant sur l’intervalle [0, k0]. 
4.2.3 Exemple 

Considérons un système régi par l’équation de commande : 

                                          1 A Bx k x k e k    

avec :                         1 1
A

1 2

 
          et      

1
B

2

 
  
   

  Formulons l’hypothèse que ce système est sollicité par un échelon unité, soit e(k) =1 
pour tout 0k   et cherchons la suite des 5 premiers échantillons correspondant aux deux 
signaux du vecteur d’état, soit x1(k) et x2(k). On suppose que l’état initial est caractérisé par 
x(0)=0. 

  En procédant par itérations successives, on obtient aisément la suite correspondant au 
vecteur d’état à chaque instant d’échantillonnage. 
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 

 

 

 

 

0 1 1
1

0 2 2

1 1 2
2

2 2 2

2 1 3
3

2 2 2

3 1 6
4

2 2 6

6 1
5

6 2

1 1
2 1

1 1
2 1

1 1
2 1

1 1
2 1

1 1
2 1

x

x

x

x

x

       
        
       
       

                
       

                
       

        
       
    

   
   


 

 

 

 

 

1

16
















          

 

4.3    COMMANDABILITÉ D’UN SYSTÈME À TEMPS DISCRET 

La commandabilité des systèmes à temps discret s’étudie exactement de la même manière 
que pour les systèmes à temps continu. 

4.3.1 Accessibilité 

  Un système est dit accessible à l’état x(k0) s’il est possible de déterminer une suite 
d’échantillons d’entrée e(k) sur l’intervalle [0, k0-1] de manière à amener le système de état 
x(0) = 0 vers l’état x(k0). 

  Si un système est accessible quel que soit x(k0), il est dit complètement accessible. 

Remarque : les notions d’accessibilité, de commandabilité et de gouvernabilité sont encore 
ici, généralement confondues. 

4.3.2 Critère de commandabilité  

  Un système est complètement accessible et complètement commandable si et 
seulement si les vecteurs (B), [A](B), [A]2(B) , . . . , [A]n-1(B) sont linéairement 
indépendants. 

  Cet énoncé peut se traduire également de la manière suivante : on définit la matrice 
de commandabilité ou de gouvernabilité par la matrice formée des n vecteurs colonnes (B), 
[A](B), [A]2(B), . . . ,[A]n-1(B) :  

                                  [C]([A](B)) = [(B)  [A](B)  [A]2(B) · · · [A]n-1(B)] 

  La paire [A], (B) est complètement commandable si et seulement si la matrice de 
commandabilité est régulière, autrement dit si son déterminant n’est pas nul. 

4.4 OBSERVABILITÉ DE L’ÉTAT D’UN SYSTÈME 

  L’observabilité des systèmes à temps discret s’étudie exactement de la même 
manière que pour ceux à temps continu. 

4.4.1 Définition 

Un système est dit observable à un instant k2Te, si la connaissance du signal d’entrée et du 
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signal de sortie sur un intervalle de temps [k1Te, k2Te] permet de calculer l’état du système 
à l’instant k2Te.  
  Si un système est observable quel que soit l’instant k2Te, il est dit complètement 
observable. 

4.4.2 Critère d’observabilité 

  Un système est complètement observable si et seulement si les vecteurs colonnes 
(C)T, [AT](C)T, [AT]2(C)T, . . . , [AT]n-1(C)T sont linéairement indépendants. 

  Cet énoncé peut se traduire également de la manière suivante : on définit la matrice 
d’observabilité par la matrice formée des n vecteurs colonnes (C)T, [AT](C)T, [AT]2(C)T, .. , 
[AT]n-1(C)T:  
                      [O]([A](C)) = [(C)T   [AT](C)T   [AT]2(C)T …..  [AT]n-1(C)T]  

  La paire [A], (C) est complètement observable si et seulement si la matrice 
d’observabilité est régulière, autrement dit si son déterminant n’est pas nul. 

4.4.3 Exemple 

Considérons un système régi par les équations : 

                                                      
         
     

1 A B

C

x k x k e k

s k x k

   



 

avec :                                    1 1
A

1 2

 
          et        C 1 1   

La matrice d’observabilité est définie par : 

                             A C
O C A C

TT T     avec :  
1

C
1

T  
   

   et : 
1 1

A
1 2

T            

Or :                                                
1 1 1 0

A C
1 2 1 1

T T       
              

d’où :                  A C A C

1 0
O det O 1

1 1

 
      

           

Le système est donc complètement observable. 

4.5 RELATION ENTRE LA REPRÉSENTATION D’ÉTAT ET LA FONCTION 
DE TRANSFERT D’UN SYSTÈME 

4.5.1 Représentation d’état à partir de la fonction de transfert 

En temps discret comme en temps continu, la représentation d’état d’un système n’est pas 
unique. Nous présentons ici plusieurs types de représentation d’état que l’on peut obtenir à 
partir d’une fonction de transfert G(z). Les principes de construction étant rigoureusement 
les mêmes que pour la représentation d’état en temps continu, nous nous limiterons à 
présenter les résultats essentiels. 
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a)   Représentation modale 

      Ce type de représentation, encore appelée représentation parallèle, convient 
particulièrement bien à la représentation d’un système possédant plusieurs pôles réels 
distincts. Soit G(z) sa fonction de transfert : 

                                                    
 

1 2

1 2

n

n

S z
G z

E z z p z p z p

 
    

    

Cette écriture fait apparaître la somme de n fonctions de transfert et peut être matérialisée, 
sous forme de représentation d’état, par le schéma de la figure 4.4 en faisant apparaître n 

blocs élémentaires placés en parallèle. 

 

Figure.4.4 : Représentation modale d’un système à temps discret. 

On lit immédiatement : 

                                                       1i i ix k p x k e k    

d’où :                                   
     

     

1

2

1 2

1

1
1

1

0 0
0 0 0

0
0 0 n

n

x k x k e k

s k x k

p

p

p

  

    
   
        

     
 

 

  La matrice de commande [A] est diagonale et ses valeurs propres sont les pôles de la 
fonction de transfert. 
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b)  Représentation série 

Soit :                                         
      

1

1 2 n

S z
G z

E z z p z p z p


 

      

Cette écriture fait apparaître le produit de n fonctions de transfert et peut être matérialisée 
par la mise en cascade de n blocs élémentaires. 

 

Figure.4.5 : Représentation d’état d’un système discret sous forme série. 

  La figure 4.5 propose une représentation d’état cohérente avec cette forme en 
cascade de la fonction de transfert. 

          Dans ce cas, on a : 

                                           
     

     

1

2

1

0
1

0

0 0

0 0
1 0 0

0
0 1 n

x k x k e k

s k x k

p

p

p



    
   
        

     
 

 

c) Représentation compagne commandable 

On suppose ici que la fonction de transfert n’est pas factorisée. 

Soit :                            
1 1

1 1 0
1 1

1 1 01

m n m n n n
m m

n n
n

b z b z b z b z
G z

a z a z a z

     

   



   


     

La figure 4.6 représente la forme compagne commandable en temps discret.  

 
Figure.4.6 : Représentation d’état sous forme compagne commandable. 
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Les équations d’état se déduisent naturellement de cette représentation : 

                               

   
   

   
         
       

1 2

2 3

1

0 1 1 2 1

0 1 1 2 1

1

1

1

1

n n

n n n

m m

x k x k

x k x k

x k x k

x k a x k a x k a x k e k

s k b x k b x k a x k







 


 


  
       
    

 

d’où :                     
   

     

 

0 1 1

0

0 1 0 0 0

0 1 0

1 0

0 0 0 1 0

1

0 0

n

m

x k x k
e k

a a a

s k b b x k



    
   
   
        

  
        




 

d) Représentation compagne observable 

  La représentation compagne observable peut être mise en évidence à partir de la 
forme de G(z) déjà transformée dans le paragraphe précédent : 

                               
 

1 1
1 1 0

1 1
1 1 01

m n m n n n
m m

n n
n

b z b z b z b z
G z

a z a z a z

     

   



   


     

La figure 4.7 représente la forme compagne observable en temps discret. 

 

Figure.4.7 : Représentation d’état du système sous forme compagne observable. 

Les équations d’état se déduisent naturellement de cette représentation : 
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   

     

 

00

1

0 0

1 0 0

0 1 0 0
1

0

0 0 1 0

0 0 0 1 0

0 0 1

m

n

ba

a

b
x k x k

e k

a

s k x k

    
      
   

     
   
   
          
 

 

4.5.2 Calcul de la fonction de transfert à partir de la représentation d’état 

a) Transformée en z des équations d’état 

Si on applique la transformation en z aux équations d’état et si on suppose nulles les 
conditions initiales, on obtient : 

         
         
     

         
     

1 A B A B

C C

x k x k e k zX z X z E z

s k x k S z X z

       
  

 

On a donc :                                    1
A BX z zI E z


   

On tire alors l’expression de S(z) : 

                                                       1
C A BS z zI E z


   

La fonction de transfert du système est donc : 

                                               
        1

C A B
S z

G z zI
E z


    

L’inverse d’une matrice carrée étant égale à sa matrice adjointe divisée par son 
déterminant, nous pouvons en déduire que les pôles de la fonction de transfert sont les 
valeurs de z qui sont solutions de l’équation : 

                                                               det A 0zI    

Ce sont donc les valeurs propres de la matrice [A]. 

Attention : La fonction de transfert obtenue correspond uniquement à la partie observable 
et commandable du système. 

4.6    COMMANDE ÉCHANTILLONNÉE D’UN SYSTÈME À TEMPS CONTINU 

Tout comme nous l’avons vu dans la quatrième partie de cet ouvrage, la commande à 
temps discret d’un système à temps continu est une opération très fréquente. La 
représentation d’état ne change rien à cela. 

Nous avons alors affaire à des systèmes dont le schéma général correspond à la figure 4.8. 
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Figure.4.8 : Système à temps continu commandé à temps discret. 

  Le bloqueur (par exemple d’ordre 0), assure au système à temps continu un signal de 

commande e(t) constant entre deux instants d’échantillonnage et égal à e(kTe) entre les 

instants kTe et (k + 1)Te. 

4.6.1 Comportement du système 

Le comportement du système à temps continu est régi par ses équations d’état et son état, à 
un instant t quelconque, est déterminé par la relation : 

                                                         1

1

A A
1e e B

tt t t

t
x t x t e d

       

Il est possible, à partir de cette équation, de calculer l’état du système à un instant 
d’échantillonnage (k+1)Te en fonction de son état précédent x(kTe) et du signal d’entrée 
(constant sur cet intervalle) e(kTe) :   

                                             1 A 1A1 e e B
e

ee

e

k T k TT

e e kT
x k T x kT e d

  
         

Sur l’intervalle de temps considéré, on a : 

                                                                teC ee e kT    

Par conséquent : 

                                        
1 A 1A1 e e B

e
ee

e

k T k TT

e e ekT
x k T x kT d e kT

 
            

En posant :                     Ae eT

ef T     et         1 A 1e
e

e

e

k T k T

e kT
g kT d

 
     

On a :                         1 Be e e e ex k T f T x kT g kT e kT      

Il est également possible de connaître l’état du système entre deux instants 
d’échantillonnage, par exemple entre kTe et (k + 1)Te à partir de cette équation qui est 
valable quel que soit l’instant t.  

  Pour kTe < t < (k + 1)Te, on a : 

                                             A A

0
e e B

e
e

t kTt kT

e ex t x kT d e kT
 

        
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4.6.2 Influence de la période d’échantillonnage sur l’observabilité et la 
commandabilité d’un système discret 

  Le choix de la période d’échantillonnage est susceptible d’influencer l’observabilité 
et la commandabilité d’un système. On montre qu’un système à temps discret perd son 

observabilité et sa commandabilité si il existe deux valeurs propres distinctes 1  et 2  de 

la matrice [A] qui possèdent la même partie réelle et dont la différence des parties 

imaginaires est un multiple de la pulsation d’échantillonnage 
2

e

eT

 
 . 

 
Remarque : il y a donc peu de chance qu’un système à temps continu perde sa 
commandabilité et son observabilité si on prend soin de ne pas échantillonner à une 
fréquence multiple d’une de ses fréquences propres. 
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        AANNNNEEXXEE  AA  

 
Table des transformées en z usuelles 

 

Fonctions temporelles Transformées en z 

                         ( )t  ( ) 1z   

( ) 1u t   ( )
1

z
U z

z



 

( )v z kt   2( )
1
e

zT
V z

z



 

2( )s t t  
 
 

2

3

1
( )

1
ez z T

S z
z





 

( ) e ats t   ( )
e eaT

z
S z

z



 

( ) e at
s t t

   
e

( )
e

e

e

aT

e

aT

zT
S z

z







 

( ) 1 e at
s t

   
 

  
e

( )
1 e

e

e

aT

aT

z z
S z

z z








    

( ) e eat bt
s t

    ( )
e ee eaT bT

z z
S z

z z
  

 
 

1 e
( ) +

at

s t t
a a



    
 

  2

1 e
( )

1 e1

e

e

aT

e

aT

zzT
S z

a z zz






 

 
 

( ) 1 e - eat btb a
s t

a b a b

  
 

      
( )

1 e ee eaT bT

z bz az
S z

z a b z a b z
 

  
    

 

( ) 1 e - eat at
s t at

     2

e
( )

1 e e

e

e
e

aT

e

aT
aT

zaTz z
S z

z z z



 
  

  
 

( ) sins t t  2

sin
( )

2 cos 1
e

e

z T
S z

z z T





 

 

( ) coss t t  
 

2

cos
( )

2 cos 1
e

e

z z T
S z

z z T







 
 

( ) e sinats t t  22

e sin
( )

2 e cos e

e

e e

aT

e

aT aT

e

z T
S z

z z T






 
 

 

( ) e cosat
s t t  

2

22

e cos
( )

2 e cos e

e

e e

aT

e

aT aT

e

z z T
S z

z z T






 




 
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AANNNNEEXXEE  BB  

 

 

Équivalence entre fonctions de transfert 
en temps continu et en temps discret 

 

 

 

Il n’existe pas, à proprement parler, d’équivalents exacts entre une fonction de transfert en 
temps continu, de type Laplace et une fonction de transfert en temps discret en z. Les 
équivalents proposés sont plus ou moins précis, plus ou moins efficaces et plus ou moins 
délicats à manipuler. Le choix d’un type d’équivalent est susceptible d’influencer la validité 
des résultats en termes de réponse temporelle ou de représentation fréquentielle. 

 

 

Équivalence à la dérivation :                                    

11

e

z
p

T




      

Équivalence à l’intégration :                              
 
 

1

1

2 1

1e

z
p

T z








  

Équivalence modale :                                      
e i ep T

ip p z  
 

 

  La table ci-dessous propose quelques équivalents basés sur l’équivalence à la réponse 
impulsionnelle et justifiés, pour les plus simples, par l’équivalence modale. Ils sont 
spécifiquement adaptés pour conserver le gain statique du système. Ces équivalents peuvent 
être obtenus par la relation : 

                                              

   1 1
( )

G pz z
G z Z Z g t dt

z p z

           
  

Où G(p) est la transformée de Laplace de la réponse impulsionnelle du système à temps 
continu. 
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Fonction de transfert 

en temps continu 
Fonction de transfert 

en temps discret 

1
( )G p

p


 ( )
1

eT
G z

z



 

1
( )G p

p a



  

1 e
( )

e

e

e

aT

aT
G z

a z









 

  
1

( )G p
p a p b


 

 
  
  
1 e 1 e

( )
e e

e e

e e

aT bT

aT bT
G z

ab z z

 

 

 


 
 

 
1

( )G p
p p a




 
 

 
 2

1 e
( )

1 e

e

e

aT

e

aT

T
G z

a z a z






 

 
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