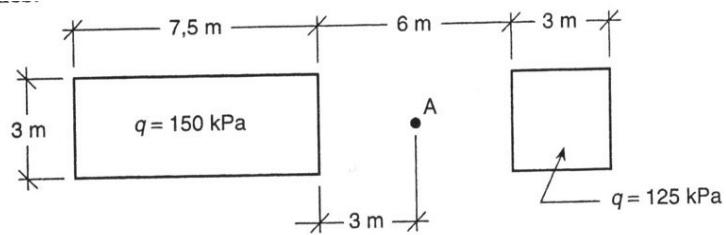
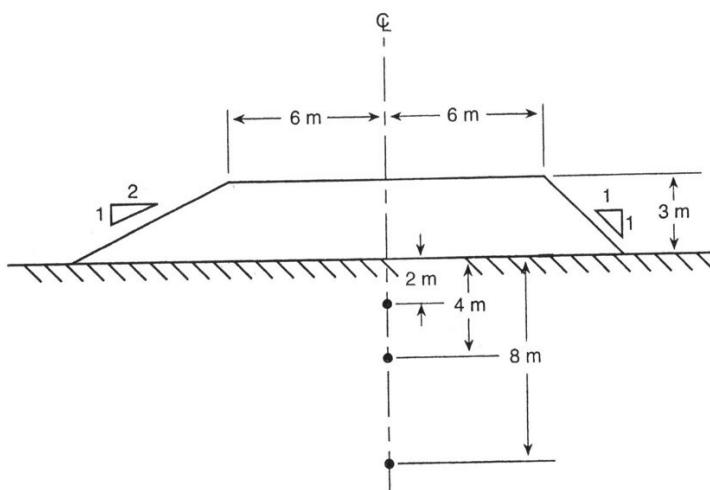


2- Calculation of stresses in an overloaded soil


Exercise. 1:

The following figure shows a cross-section of a road embankment built on a **5 m** thick soil deposit. The compacted materials constituting the embankment have a total density of **2050 kg/m³**. Let's calculate the increase in stress at **mid-depth** and at the **base** of the deposit.


Exercise. 2:

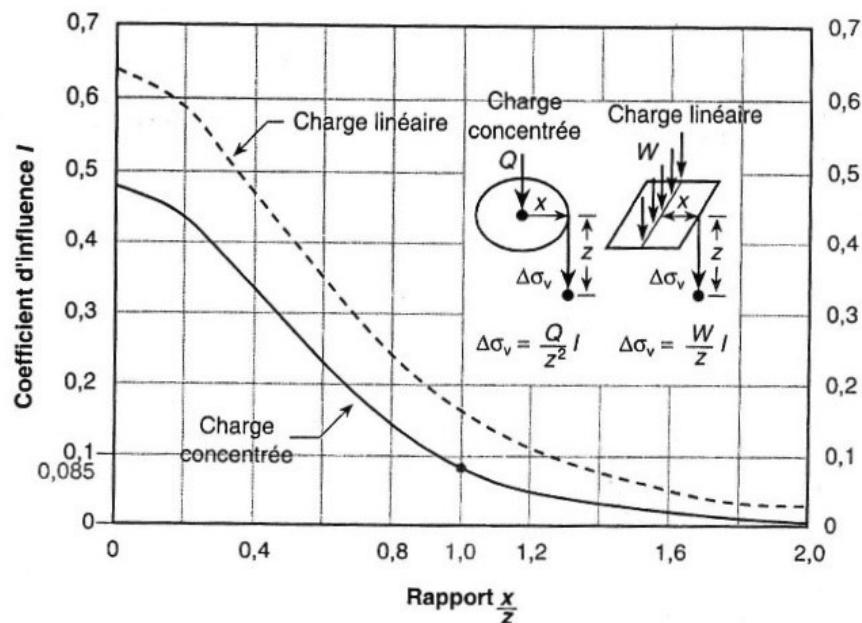
Using the data in the figure, calculate the stress induced by the loading of the footings at point **A** located **2 m** deep, **halfway** between the two footings.

Exercise. 3:

Calculate the induced stresses at depths of **2 m**, **4 m**, and **8 m** below the centerline of the embankment. The embankment density is **2230 kg/m³**.

Exercise. 4:

Determine the induced stress at a depth of **1 m** at two points placed directly under two concentrated loads of **600** and **800 kN**. Also calculate the induced stress at a depth of **1 m** midway between these two loads, if they are **2 m** apart.


Exercise. 5:

A circular footing with a radius of **3 m** applies a pressure of **200 kPa** to the ground. Determine the induced vertical stress at **1 m, 3 m, 6 m** and **12 m**, below the center of the footing.

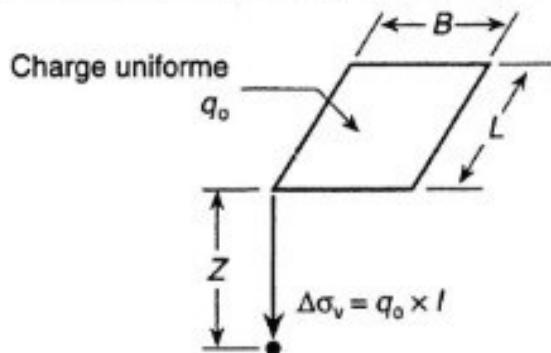
Exercise. 6:

A square footing measuring **4 m** by **4 m** carries a total load of **1520 kN**. Determine the increase in stress at a depth of **4 m** and **8 m**:

- Under a corner of the footing;
- Under the center of the footing;
- Under the midpoint of one side of the footing.

Coefficient d'influence d'une charge sous le centre et sous le bord d'une semelle circulaire chargée uniformément (d'après Hunt, 1986).

$\frac{z}{D}$	I	
	Bord	Centre
0	0,50	1,00
0,25	0,44	0,90
0,50	0,35	0,64
0,75	0,26	0,44
1,00	0,20	0,28
1,25	0,15	0,20
1,50	0,12	0,14
1,75	0,09	0,12
2,00	0,07	0,08
2,50	0,05	0,06
3,00	0,03	0,04
4,00	0,02	0,02
5,00	0,01	0,01
10,00	—	—


Diagram of a circular blade of radius r at depth z under a uniform load q_0 . The influence coefficient I is defined as $\Delta\sigma_v = q_0 \times I$.

où z = profondeur sous le centre de la semelle (m)

r = rayon de la semelle (m)

q_0 = charge uniforme (kPa)

Coefficient d'influence d'une charge sous le coin d'une semelle rectangulaire chargée uniformément.

$\frac{L}{z}$	$\frac{B}{z}$												
	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	2	3	∞
0,1	0,005	0,009	0,013	0,017	0,020	0,022	0,024	0,026	0,027	0,028	0,031	0,032	0,032
0,2	0,009	0,018	0,025	0,033	0,039	0,043	0,048	0,050	0,053	0,055	0,060	0,061	0,062
0,3	0,013	0,025	0,037	0,048	0,056	0,065	0,068	0,073	0,077	0,081	0,088	0,089	0,090
0,4	0,017	0,033	0,048	0,060	0,071	0,080	0,087	0,093	0,098	0,101	0,113	0,114	0,115
0,5	0,020	0,039	0,056	0,071	0,085	0,097	0,106	0,111	0,118	0,120	0,136	0,138	0,139
0,6	0,022	0,043	0,065	0,080	0,097	0,107	0,120	0,125	0,136	0,139	0,153	0,156	0,157
0,7	0,024	0,048	0,068	0,087	0,106	0,120	0,132	0,140	0,148	0,154	0,169	0,172	0,173
0,8	0,026	0,050	0,073	0,093	0,111	0,125	0,140	0,146	0,156	0,164	0,181	0,183	0,185
0,9	0,027	0,053	0,077	0,099	0,118	0,136	0,148	0,156	0,166	0,172	0,191	0,195	0,196
1	0,028	0,055	0,081	0,101	0,120	0,139	0,154	0,164	0,172	0,179	0,200	0,203	0,205
2	0,031	0,060	0,088	0,113	0,136	0,153	0,169	0,181	0,191	0,200	0,232	0,237	0,240
3	0,032	0,061	0,089	0,114	0,138	0,156	0,172	0,183	0,195	0,203	0,237	0,244	0,247
∞	0,032	0,062	0,090	0,115	0,139	0,157	0,173	0,185	0,196	0,205	0,240	0,247	0,250
										0,22			

Coefficient d'influence sous l'axe de symétrie d'un remblai en longueur.

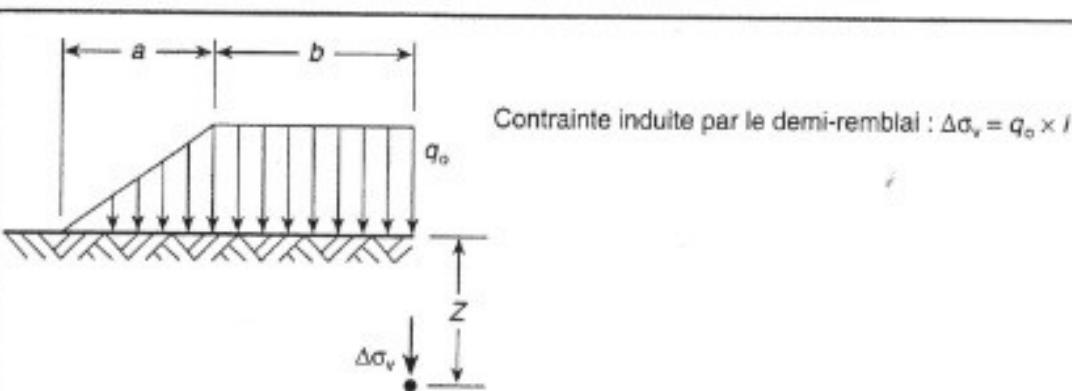


Diagram illustrating the stress distribution under a symmetric embankment. The embankment has a total length $L = a + b$ and a height z . The top width is a and the bottom width is b . A vertical force q_0 is applied at the top center. The induced vertical stress at a depth z is denoted as $\Delta\sigma_v$. The formula for the induced stress is given as $\Delta\sigma_v = q_0 \times I$.

$\frac{b}{z}$	$\frac{a}{z}$												
	0,01	0,03	0,05	0,1	0,3	0,5	1	2	3	4	6	8	10
0	0	0,008	0,015	0,031	0,091	0,145	0,250	0,354	0,396	0,421	0,446	0,461	0,469
0,1	0,067	0,072	0,079	0,095	0,150	0,197	0,290	0,377	0,410	0,432	0,453	0,466	0,473
0,2	0,129	0,134	0,140	0,155	0,208	0,247	0,322	0,395	0,425	0,442	0,462	0,472	0,475
0,3	0,184	0,190	0,195	0,207	0,249	0,286	0,350	0,410	0,435	0,450	0,467	0,475	0,479
0,4	0,233	0,238	0,243	0,254	0,291	0,321	0,376	0,426	0,447	0,461	0,474	0,479	0,482
0,5	0,280	0,282	0,287	0,296	0,325	0,351	0,396	0,438	0,455	0,466	0,476	0,480	0,483
0,6	0,315	0,317	0,320	0,328	0,353	0,376	0,412	0,447	0,463	0,472	0,480	0,482	0,485
0,7	0,345	0,346	0,349	0,357	0,379	0,397	0,426	0,455	0,467	0,475	0,482	0,483	0,486
0,8	0,372	0,374	0,376	0,382	0,398	0,414	0,436	0,462	0,472	0,478	0,484	0,485	0,488
0,9	0,393	0,395	0,396	0,400	0,416	0,429	0,447	0,465	0,474	0,479	0,486	0,487	0,489
1,0	0,412	0,413	0,414	0,418	0,430	0,436	0,454	0,471	0,478	0,482	0,487	0,489	0,491
1,2	0,437	0,437	0,438	0,439	0,450	0,458	0,467	0,476	0,481	0,484	0,489	0,490	0,492
1,4	0,454	0,455	0,456	0,457	0,463	0,467	0,474	0,481	0,486	0,488	0,491	0,492	0,494
1,6	0,467	0,467	0,467	0,468	0,471	0,473	0,478	0,485	0,488	0,489	0,492	0,494	0,495
1,8	0,473	0,473	0,473	0,473	0,474	0,476	0,480	0,486	0,489	0,490	0,493	0,496	0,497
2,0	0,478	0,479	0,479	0,479	0,480	0,481	0,485	0,488	0,491	0,492	0,495	0,497	0,498
3,0	0,492	0,493	0,493	0,493	0,494	0,495	0,496	0,496	0,497	0,497	0,498	0,499	0,500