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Chapitre I: Simulation par dynamique moléculaire

I.1.Introduction:

La dynamique moléculaire est une technique de simulation numérique permettant de
modéliser I'évolution d'un systéme de particules au cours du temps. Elle est particulierement
utilisée en sciences des matériaux et pour I'étude des molécules organiques, des protéines, de

la matiére molle et des macromolécules.

Dynamique Moléculaire (DM): simulation numérique consistant a calculer I'évolution
temporelle des positions r; et vitesses vi d'un systeme compose de N atomes en interaction, en

intégrant numériquement les équations de la mécanique classique newtonienne.

1.2.Définition du systéme:

En dynamique moléculaire le systéme est considéré comme un volume bien délimité appelé
"boite de simulation”. Cette boite contient N atomes confiné dans un volume V, l'atome
soumis a son mouvement gouverné par la force.

La boite de simulation peut avoir n'importe quelle forme géométrique selon la nature du
systeme physique.

La forme cubique est choisi lorsqu'il s'agit un solide ou liquide.
La forme parallélépipéde ou cylindre sont choisi pour les gaz.

I.3.Equations du mouvement

La dynamique moléculaire (DM) classique est fondée sur la mécanique newtonienne : les
propriétés d’un ensemble d’atomes ou particules sont déterminées en étudiant la trajectoire de
chaque particule au cours du temps. Pour cela, on applique les lois de la mécanique classique
aux atomes qui sont assimilés a une masse ponctuelle. On résout donc simultanément, pour

tous les atomes 1 d’un systeme, les équations classiques du mouvement :

f = ma, .. @

Ou f est la somme des forces s’exercant sur I’atome i, m sa masse et & son accélération.



Les forces d’interaction (ou le potentiel dont elles dérivent) peuvent étre obtenues a partir des
premiers principes de la mécanique quantique, on parle alors de DM ab initio, mais le plus
souvent (pour des raisons de taille de systeme a simuler) elles dérivent d’un potentiel fixé

empiriqguement ; on parle alors de DM classique.

I.4.Intégration des équations du mouvement : qualités d’un bon algorithme:
1.4.1.L"algorithme de Verlet.

La majorité des algorithmes d'intégration considére que les positions ainsi que les propriétés

dynamiques peuvent étre développées en séries de Taylor.

L'algorithme d'approximation di a Verlet est I'un des plus employés. Il utilise les positions
et les accélérations au temps t ainsi que les positions ri a un pas précédent (t -At) pour calculer
les nouvelles positions ri au temps (t +At) et les vitesses a l'instant t.

Un développement de Taylor en (t +At)

r(t+At) =1 (t) +Vv, (1).At +a, (t).At* /2 +......(2)

et de maniére similaire

r(t—At) =r (t) -V, (t).At+a, (1).At* /2 +.....(3)

2)+3)= " (t+At) = 2ri(t)—l’i(t—At)+%.At2....(4)
_hL(t+AL) - (t- At)
2)-3)= vi(t) = AL ....(5)

1.4.2.L"algorithme de Leapfrog

D'autre part, si I'on suppose que At est suffisamment petit pour que l'algorithme garantisse
une constance de la vitesse et de I'accélération, on peut écrire a partir de I'équation
(2) la relation suivante:
. (t+ At) =r, (t) +v,moy.At...(6)

avec v,moy la vitesse moyenne durant I'intervalle de temps At que I'on peut aussi exprimer

sous la forme suivante:



v,moy =V, (t +%}..(7)

On obtient alors en remplacant v,moy de I'équation (7):
[+ AD) =1 (1) +V [t +%).At...(8)
De méme:

(t—At) = £ (1) -, (t - %).At..(Q)

On obtient immédiatement

Vi(ng _n(t+AY-rn(t) .(10)
2 At

vi(t—§j= (O-E=4AY
2 At

(10)-(11) et en utilisant I'équation (4)

v, (t +§j =V, (t —§j+w.m....(12)
2 2 m.

1.5. Conditions initiales:

En DM, la résolution des équations différentielles du mouvement nécessite la connaissance
des conditions initiales. Alors, pour exécuté 1’algorithme de DM, nous devons les imposer.
Pour la premiére simulation, les positions des particules sont choisies comme étant les noeuds
des réseaux cristallins étudier. Le choix de ce type de réseau n’est pas important puisqu’au
cours de la simulation, le systéme perdra sa structure pour prendre celle d’un liquide isotrope.
La configuration cristalline nous permet d’éviter des chevauchements néfastes a la simulation
qu’aurait causés une distribution aléatoire des positions. Par contre, pour les vitesses initiales,
on peut imposer une distribution aléatoire de Maxwell-

Boltzmann permettant de les lier a la température.

1.6.Conditions aux limites périodiques:

Les simulations informatiques sont généeralement effectuées sur un petit nombre de
molécules, N < 10 000. Grace au progres réaliser sur les algorithmes de calcul et la puissance
des processeurs les systémes simulés peuvent atteindre 10 millions d’atomes, méme si la

majorité des systemes étudiés reste relativement petit. La petite taille du systeme entraine une



influence significative sur les effets de surface. Pour 1000 atomes disposés dans un cube 10 x
10 x 10, pas moins de 488 atomes apparaissent sur les faces cubiques, de sorte que les atomes
a la surface rencontreront des forces bien différentes des atomes dans le bulk.

Les conditions aux limites périodiques sont appliquées en dynamique moléculaire pour

simuler des verres, des liquides, des cristaux ou des systemes mixtes.

1.7. Variables thermodynamiques:

L’¢état thermodynamique d’un systéme est complétement défini par un nombre limité de
variables telles que la température (T), la pression (P), le volume (V) ou le nombre de
particules (N), les autres propriétés thermodynamiques pouvant étre obtenues a 1’aide des

équations d’état et des relations fondamentales de la thermodynamique.

1.8. Ensemble statistique et Contréle thermodynamiques:

Parmi les concepts important d’une simulation de DM, il Ya Le concept d’ensemble
statistique qui a été introduit par JosiahWillard Gibbs en 1902 et qui permet de faire le lien
entre les variables thermodynamiques et des données telles que les positions ou les vitesses
qui sont extraites des simulations. Parmi les plus important dans une simulation nous avons
I’ensemble micro-canonique (NVE) ou le systeme est isolé c-a-dire que N, V et I’énergie total
(E) sont fixés. Mais pour pouvoir étendre les domaines d’application de la dynamique
moléculaire, il a fallu développer des méthodes permettant de travailler dans des ensembles
thermodynamiques autre que I’ensemble NVE ou les variable fixé deviennent des paramétres
libre d’évoluer dans d’autres ensembles statistique comme : 1’ensemble canonique (NVT) ou
la température peut étre imposée, 1’ensemble isobare-isoenthalpique (NPH) avec un controle
de la pression, ou encore isobare-isotherme (NPT) pour lequel la pression et la température
sont controlées simultanément et pour finir 1’ensemble grand canonique (uVT) qui est
caractérisé par un potentiel chimique constant, un volume constant et une température fixe.
Technigquement, ces controles peuvent se faire de plusieurs manieres. Il existe un certain
nombre de techniques permettant les contrdles, qui sont plus ou moins proches de la réalité
physique.

- Le contrdle différentiel : Les parameétres thermodynamiques sont fixés a la valeur prescrite
et aucune fluctuation autour de la valeur moyenne ne peut se produire.

- Le contrdle proportionnel : Les paramétres thermodynamiques sont controlés au travers
des variables dynamiques a savoir les positions et les vitesses. Les parametres sont corrigés a

chaque étape par I’intermédiaire d’une constante de couplage qui s’applique aux vitesses et



aux positions instantanées. La constante de couplage est déterminée a chaque pas a partir de
I’écart entre la valeur instantanée du parameétre en question et de sa consigne.

- Le controéle intégral : L’hamiltonien du systéme est étendu en introduisant de nouvelles
variables dynamiques représentant I’influence du milieu extérieur sur le systeme (volume,
température). L'évolution temporelle est déterminée par les équations du mouvement de
I’hamiltonien étendu au méme titre que les positions et les vitesses des atomes.

- Le contrdle stochastique : Pour contr6ler une propriété thermodynamique donnée, ses
variables associées sont modifiées aléatoirement au cours de la simulation. Par exemple, la
température du systeme est contr6lée périodiquement en déterminant une distribution
aléatoire gaussienne des vitesses autour de la valeur désirée, simulant ainsi un processus de

collisions aléatoires entre les atomes du systéme et les atomes fictifs d’un thermostat.
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Chapitre I1: Géneralité sur la méthode de calcul LMTO

I1.1. Introduction:

La détermination de la structure électronique d’un cristal, constitu¢ d’un nombre infini
d’électrons qui sont soumis a un potentiel effectif d’'un nombre infini de noyaux, est un défi
majeur du calcul ab-initio. Le calcul de I’énergie totale est conditionné, comme nous venons de le
voir, par la connaissance de la densité électronique. Il est donc important de signaler que les
propriétés des matériaux que nous désirons calculer sont gouvernées par la formation des orbitales
et la distribution des électrons dans ces orbitales. Cette idée conduit a une grande simplification
dans le calcul de 1’énergie totale en faisant appel a des méthodes numériques au lieu de la théorie
de la fonctionnelle de la densité qui traite tous les électrons du cristal.

Les méthodes de calcul différent par la forme utilisée du potentiel et par les fonctions d’onde
prises comme base. Parmi elles, on trouve les méthodes basées sur une combinaison linéaire
d’orbitales atomiques (LCAO), utilisées dans le traitement des métaux de transition. Les méthodes
des ondes planes orthogonalisées (OPW) et leurs dérivées sont applicables aux bandes de
conduction de caractére «s-p » des métaux simples. Les méthodes cellulaires du type ondes planes
augmentées (APW). Les méthodes mises au point par Andersen: ondes planes augmentées
(LAPW) et la méthode linéaire des orbitales muffin-tin (LMTO), permettent de gagner

plusieurs ordres de grandeur dans le temps de calcul.

La méthode LMTO est I’'une des méthodes les plus précises, qui jouent un réle trés important
pour résoudre les équations de la fonctionnelle de la densité pour un systeme de matiére

condensée. Cette approche est caractérisée par deux points:
1- L'utilisation des fonctions de base d'atome centré qui sont définies par le moment angulaire.

2- L'augmentation pour introduire les détails atomiques dans les fonctions de base a proximité de

chaque noyau.

11.2. Méthode LMTO (Linearized Muffin-Tin Orbitals)

La méthode des orbitales muffin-tin linéarisées est basée sur le découpage virtuel de
I’espace en deux régions (Figure I11.1) : (I) des zones sphériques centrées sur chaque site
atomique ou le potentiel est intense et presque sphérique, et (1) des zones interstitielles, entre
les spheres, ou le potentiel est constant (lisse) et les électrons ont un comportement proche des

électrons libres. Le potentiel total de muffin-tin est alors exprimé par :



Vo () = V(r),r <Ry,
" - Virz T 2 Ryr (1.1)

Ou Rwr est le rayon de la sphere muffin-tin, V(r) est le potentiel sphérique a I’intérieur de la

sphére muffin-tin et Vmrz est la valeur du potentiel constant dans la région interstitielle.

4 N
\R;m

Région interstitielle

Ry
/
.

Figure 11.1: Représentation de la répartition de la maille élémentaire en sphéres Muffin-Tin et

en région interstitielle.

Les fonctions d’onde dans les deux régions seront obtenues par la résolution de 1’équation de
Schrodinger. Dans la région sphérique, elles sont représentées par le produit des fonctions
radiales et harmoniques sphériques, et dans la région interstitielle elles sont tout simplement
des ondes planes.

I1.3.Instruction de base:

La méthode des orbitales muffin-tin permet de résoudre les équations individuelles de
Kohn-Sham en utilisant le principe variationnel linéaire de Rayleigh-Ritz. Ce principe repose

sur le calcul des solutions propres variationnelles “ij>et des énergies Ejk correspondantes
aux états éIeCtroniques{ |jk> }.Les fonctions d’ondes variationnelles “ij>, représenteées

dans la base MTQO’s, sont construites a partir d’une combinaison linéaire de MTO’s

XRL > qui
sont des fonctions indépendantes de 1’énergie, de symetrie L = (I,m) et centrées sur des sites

atomiques R en chaque point K de la zone de Brillouin

‘Tjk>:;|lRL>Ajk,RL (11.2)



ol k désigne le vecteur d’onde électronique, j 1’indice de la bande, L I’abréviation du
moment angulaire (I,m) et AjxrL désigne les coefficients d’expansion. L’utilisation de la forme
de I’Eq. (I.2) et le développement des équations individuelles de Kohn-Sham sont a 1’origine

de leur transformation en un probléme général de valeurs propres :

;{H jKRLURL Ejk'ojk,R'L'RL }AJkRL =0 (11.3)

H =H

iRLRL < ;(R,L.‘H i| Zr.) représente les éléments des matrices hamiltoniennes dans

jk,R'LRL
la base des MTO’s et Ojk,R'L'RLE<7(R‘L'|ZRL> sont les éléments de matrices de recouvrement

(overlap matrices), calculés de maniére self-consistante sur un nombre limité de points k
appartenant a la partie irréductible de la zone de Brillouin pour chacune des bandes

électroniques j.

De ce fait, I’Eq. (IL.3) formée a partir d’un systeme d’équations linéaires, est résolue par
diagonalisation de I’hamiltonien. Elle permet ainsi de trouver les valeurs propres des énergies

Ejx et les valeurs propres des coefficients AjkrL correspondantes.

Les coefficients Ajre étant trouvés, ils seront utilisés pour construire les solutions

variationnelles “ij> puis les densités électroniques p des états occupes, soit :

0CC 2
pr) =" [W,(r) |
jk
La base MTO’s, construite a partir de la combinaison des solutions des équations de
Schrédinger, constitue une base convenable pour calculer les solutions propres “ij>et les
énergies correspondantes Ej, avec des erreurs estimées au troisieme et au second ordre en
(Ejk-Erwv) respectivement, a I’intérieur et en dehors de la sphére muffin-tin ; Ery étant une

énergie constante et arbitraire choisie au centre de la partiec occupée d’une bande (I = s, p,

d....).
11.4. Augmentation dans la méthode FP-LMTO :

La formulation et I'augmentation de pseudo-potentielles sont deux approches de concurrence
pour présenter les détails atomiques dans la fonction d’onde prés du noyau.



Quand une formulation pseudo potentielle est utilisée, c’est implicite : bien que seulement les
fonctions lissées soient manipulées durant le calcul, les véritables fonctions d’ondes pourraient
étre de ces dernic¢res d’une fagon bien définie. Quand 1’augmentation est utilisée, les fonctions de
base sont explicitement construites pour montrer le changement énergétique et caractére
oscillateur prés de 1’atome. Dans la premicre étape, I’espace est divisé en deux régions, la région
des spheres atomiques et la région interstitielle. Dans toute la région interstitielle, les fonctions de
base sont égales pour étre lissent « fonctions enveloppes » qui dans notre cas sont des fonctions
lissées de Hankel. A D’intérieur de chaque sphére atomique, chaque fonction enveloppe est
remplacée par une solution numérique de 1’équation de Schrodinger. Spécifiquement, dans la
méthode linéaire. Les solutions numériques de I’équation de Schrédinger dans un potentiel
sphérique et leurs dérivés d’énergie sont combinées pour rassembler lissement a la fonction
enveloppe a la limite de la spheére.

En comparant les deux approches, en conservant la norme de la formulation du pseudo
potentiel a un certain nombre d’avantages, une fois ’effort initial de construire le pseudo
potentiel est complété. Les coupures du moment angulaire sont généralement basses et il est
facile d’obtenir une expression de la force. En raison de la complexité de la procédure de

I’augmentation, il est souvent difficile de tirer un théoréme de force valable.

11.3. Avantages et inconvénients de la méthode LMTO :

Les avantages de définir les fonctions de base de la méthode LMTO comme des fonctions
de Hankel augmentées ne sont pas évidentes. Cela mene a un formalisme compliqué et un
grand effort de programmation. D’ou I’avantage de la méthode LMTO.

Les fonctions LMTO sont construites pour étre semblables aux véritables fonctions d’onde du
cristal. En fait, si le potentiel cristallin est approximé par la forme muffin-tin, c'est-a-dire,
sphérique a I’intérieur et constant a 1’extérieur, la véritable fonction d’onde du cristal devient
une somme finie des fonctions LMTO.

- Une conséquence de la petite taille de base, les calculs devraient étre rapides. Plus
précisement, la réduction de la base par la moitié qui peut sauver un sept-huitiéme du temps

machine.

- Une autre conséquence de la petite taille de la base est la réduction de la meémoire
demandée, qui peut étre également importante en économisant le temps machine quand on

calcule les grands systémes.

- Les fonctions enveloppes de la méthode LMTO, c'est-a-dire, les fonctions de Hankel solide,

sont plus simples analytiqguement. Ceci aide a performer les différentes étapes qui doivent étre



faites. Finalement, beaucoup de propriétés utiles surviennent parce que ces fonctions sont des

fonctions propres de 1’opérateur de I’énergie cinétique.

- En choisissant I’ensemble de base pour un systéme spécifique. L’intuition chimique peut
étre utilisée. La base peut étre congcue en fonction du probléme, elle peut étre choisie pour
chaque atome séparément, parfois les résultats peuvent étre interprétés plus simplement dus
aux fonctions de base atome-orienté.

L’inconvénient en calculant des intégrales tridimensionnelles employant une maille est, que
I’effort de calcul peut facilement dominer toutes les autres étapes. Pour maintenir 1’effort
maniable, la plus grande priorité, c’est de rendre les fonctions a intégrer aussi lisse que
possible. Ceci peut étre fait en utilisant les fonctions lissées de Hankel comme fonctions
enveloppes. Par exemple, considérant le Silicium avec un rayon muffin-tin de 2.2 bohr. Pour
la base du LMTO standard, le lissage doit étre apparent seulement a I’intérieur de la sphére
MT, demandant un rayon lisse pas plus grand que 0.6 a 0.7 bohr. En dehors de la sphére
centrale, les fonctions lissées et conventionnelles de Hankel sont alors identiques pour une
précision acceptable.

L’espacement demandé de la maille d’intégration est approximativement 0.35 bohr. Si les
fonctions se courbent au-dessus a I’extérieur de la sphére MT, on trouve que les fonctions de
base optimales ont un rayon liss¢ d’environ 1.4 bohr. Pour ces fonctions, la maille
d’intégration peut étre deux fois plus brute. Par conséquent, le nombre de points de la maille
et ’effort de calcul sont divisés par huit. On peut mentionner que dans I’implémentation
finale, les ¢léments de matrice du potentiel lissé sont actuellement calculés dans I’espace

réciproque.
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