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Chapitre I: Simulation par dynamique moléculaire 

 

I.1.Introduction:      

    La dynamique moléculaire est une technique de simulation numérique permettant de 

modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement 

utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de 

la matière molle et des macromolécules. 

Dynamique Moléculaire (DM): simulation numérique consistant a calculer l'évolution 

temporelle des positions ri et vitesses vi d'un système compose de N atomes en interaction, en 

intégrant numériquement les équations de la mécanique classique newtonienne. 

 

I.2.Définition du système: 

   En dynamique moléculaire le système est considéré comme un volume bien délimité appelé 

"boite de simulation". Cette boite contient N atomes confiné dans un volume V, l'atome 

soumis à son mouvement gouverné par la force. 

   La boite de simulation peut avoir n'importe quelle forme géométrique selon la nature du 

système physique.  

La forme cubique est choisi lorsqu'il s'agit un solide où liquide. 

La forme parallélépipède où cylindre sont choisi pour les gaz. 

 

I.3.Équations du mouvement 

   La dynamique moléculaire (DM) classique est fondée sur la mécanique newtonienne : les 

propriétés d’un ensemble d’atomes ou particules sont déterminées en étudiant la trajectoire de 

chaque particule au cours du temps. Pour cela, on applique les lois de la mécanique classique 

aux atomes qui sont assimilés à une masse ponctuelle. On résout donc simultanément, pour 

tous les atomes i d’un système, les équations classiques du mouvement : 
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Les forces d’interaction (ou le potentiel dont elles dérivent) peuvent être obtenues à partir des 

premiers principes de la mécanique quantique, on parle alors de DM ab initio, mais le plus 

souvent (pour des raisons de taille de système à simuler) elles dérivent d’un potentiel fixé 

empiriquement ; on parle alors de DM classique. 

 

I.4.Intégration des équations du mouvement : qualités d’un bon algorithme: 

 

I.4.1.L'algorithme de Verlet. 

 

   La majorité des algorithmes d'intégration considère que les positions ainsi que les propriétés 

dynamiques peuvent être développées en séries de Taylor.  

 

   L'algorithme d'approximation dû à Verlet est l'un des plus employés. Il utilise les positions 

et les accélérations au temps t ainsi que les positions ri à un pas précédent (t -t) pour calculer 

les nouvelles positions ri au temps (t +t)  et les vitesses à l'instant t. 

Un développement de Taylor en (t +t)   
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  I.4.2.L'algorithme de Leapfrog 

   D'autre part, si l'on suppose que t est suffisamment petit pour que l'algorithme garantisse 

une constance de la vitesse et de l'accélération, on peut écrire à partir de l'équation 

(2) la relation suivante: 
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   avec moyvi la vitesse moyenne durant l'intervalle de temps t que l'on peut aussi exprimer 

sous la forme suivante: 
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On obtient alors en remplaçant moyvi de l'équation (7): 
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De même: 
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   (10)-(11) et en utilisant l'équation (4)
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I.5. Conditions initiales: 

   En DM, la résolution des équations différentielles du mouvement nécessite la connaissance 

des conditions initiales. Alors, pour exécuté l’algorithme de DM, nous devons les imposer. 

Pour la première simulation, les positions des particules sont choisies comme étant les noeuds 

des réseaux cristallins étudier. Le choix de ce type de réseau n’est pas important puisqu’au 

cours de la simulation, le système perdra sa structure pour prendre celle d’un liquide isotrope. 

La configuration cristalline nous permet d’éviter des chevauchements néfastes à la simulation 

qu’aurait causés une distribution aléatoire des positions. Par contre, pour les vitesses initiales, 

on peut imposer une distribution aléatoire de Maxwell- 

Boltzmann permettant de les lier à la température.
  

 

I.6.Conditions aux limites périodiques: 

   Les simulations informatiques sont généralement effectuées sur un petit nombre de 

molécules, N ≤ 10 000. Grace au progrès réaliser sur les algorithmes de calcul et la puissance 

des processeurs les systèmes simulés peuvent atteindre 10 millions d’atomes, même si la 

majorité des systèmes étudiés reste relativement petit. La petite taille du système entraîne une 



influence significative sur les effets de surface. Pour 1000 atomes disposés dans un cube 10 × 

10 × 10, pas moins de 488 atomes apparaissent sur les faces cubiques, de sorte que les atomes 

à la surface rencontreront des forces bien différentes des atomes dans le bulk. 

Les conditions aux limites périodiques sont appliquées en dynamique moléculaire pour 

simuler des verres, des liquides, des cristaux ou des systèmes mixtes. 

 

I.7. Variables thermodynamiques: 

   L’état thermodynamique d’un système est complètement défini par un nombre limité de 

variables telles que la température (T), la pression (P), le volume (V) ou le nombre de 

particules (N), les autres propriétés thermodynamiques pouvant être obtenues à l’aide des 

équations d’état et des relations fondamentales de la thermodynamique. 

 

I.8. Ensemble statistique et Contrôle thermodynamiques: 

   Parmi les concepts important d’une simulation de DM, il Ya Le concept d’ensemble 

statistique qui a été introduit par JosiahWillard Gibbs en 1902 et qui permet de faire le lien 

entre les variables thermodynamiques et des données telles que les positions ou les vitesses 

qui sont extraites des simulations. Parmi les plus important dans une simulation nous avons 

l’ensemble micro-canonique (NVE) où le système est isolé c-à-dire que N, V et l’énergie total 

(E) sont fixés. Mais pour pouvoir étendre les domaines d’application de la dynamique 

moléculaire, il a fallu développer des méthodes permettant de travailler dans des ensembles 

thermodynamiques autre que l’ensemble NVE ou les variable fixé deviennent des paramètres 

libre d’évoluer dans d’autres ensembles statistique comme : l’ensemble canonique (NVT) où 

la température peut être imposée, l’ensemble isobare-isoenthalpique (NPH) avec un contrôle 

de la pression, ou encore isobare-isotherme (NPT) pour lequel la pression et la température 

sont contrôlées simultanément et pour finir l’ensemble grand canonique (μVT) qui est 

caractérisé par un potentiel chimique constant, un volume constant et une température fixe. 

Techniquement, ces contrôles peuvent se faire de plusieurs manières. Il existe un certain 

nombre de techniques permettant les contrôles, qui sont plus ou moins proches de la réalité 

physique. 

- Le contrôle différentiel : Les paramètres thermodynamiques sont fixés à la valeur prescrite 

et aucune fluctuation autour de la valeur moyenne ne peut se produire. 

- Le contrôle proportionnel : Les paramètres thermodynamiques sont contrôlés au travers 

des variables dynamiques à savoir les positions et les vitesses. Les paramètres sont corrigés à 

chaque étape par l’intermédiaire d’une constante de couplage qui s’applique aux vitesses et 



aux positions instantanées. La constante de couplage est déterminée à chaque pas à partir de 

l’écart entre la valeur instantanée du paramètre en question et de sa consigne. 

- Le contrôle intégral : L’hamiltonien du système est étendu en introduisant de nouvelles 

variables dynamiques représentant l’influence du milieu extérieur sur le système (volume, 

température). L'évolution temporelle est déterminée par les équations du mouvement de 

l’hamiltonien étendu au même titre que les positions et les vitesses des atomes. 

- Le contrôle stochastique : Pour contrôler une propriété thermodynamique donnée, ses 

variables associées sont modifiées aléatoirement au cours de la simulation. Par exemple, la 

température du système est contrôlée périodiquement en déterminant une distribution 

aléatoire gaussienne des vitesses autour de la valeur désirée, simulant ainsi un processus de 

collisions aléatoires entre les atomes du système et les atomes fictifs d’un thermostat. 
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Chapitre II: Généralité sur la méthode de calcul LMTO 

 

 

II.1. Introduction:     

 

   La détermination de la structure électronique d’un cristal, constitué d’un nombre infini 

d’électrons qui sont soumis à un potentiel effectif d’un nombre infini de noyaux, est un défi 

majeur du calcul ab-initio. Le calcul de l’énergie totale est conditionné, comme nous venons de le 

voir, par la connaissance de la densité électronique. Il est donc important de signaler que les 

propriétés des matériaux que nous désirons calculer sont gouvernées par la formation des orbitales 

et la distribution des électrons dans ces orbitales. Cette idée conduit à une grande simplification 

dans le calcul de l’énergie totale en faisant appel à des méthodes numériques au lieu de la théorie 

de la fonctionnelle de la densité qui traite tous les électrons du cristal.  

   Les méthodes de calcul diffèrent par la forme utilisée du potentiel et par les fonctions d’onde 

prises comme base. Parmi elles, on trouve les méthodes basées sur une combinaison linéaire 

d’orbitales atomiques (LCAO), utilisées dans le traitement des métaux de transition. Les méthodes 

des ondes planes orthogonalisées (OPW) et leurs dérivées  sont applicables aux bandes de 

conduction de caractère «s-p » des métaux simples. Les méthodes cellulaires du type ondes planes 

augmentées (APW). Les méthodes mises au point par Andersen: ondes planes augmentées 

(LAPW) et  la méthode linéaire des orbitales muffin-tin (LMTO), permettent de gagner 

plusieurs ordres de grandeur dans le temps de calcul. 

   La méthode LMTO est l’une des méthodes les plus précises, qui jouent un rôle très important 

pour résoudre les équations de la fonctionnelle de la densité pour un système de matière 

condensée. Cette approche est caractérisée par deux points: 

1- L'utilisation des fonctions de base d'atome centré qui sont définies par le moment angulaire. 

2- L'augmentation pour introduire les détails atomiques dans les fonctions de base à proximité de 

chaque noyau.   

II.2. Méthode LMTO (Linearized Muffin-Tin Orbitals) 

    La méthode des orbitales muffin-tin linéarisées est basée sur le découpage virtuel de 

l’espace en deux régions (Figure II.1) : (I) des zones sphériques centrées sur chaque site 

atomique où le potentiel est intense et presque sphérique, et (II) des zones interstitielles, entre 

les sphères, où le potentiel est constant (lisse) et les électrons ont un comportement proche des 

électrons libres. Le potentiel total de muffin-tin est alors exprimé par : 



 

 

(II.1) 

Où RMT est le rayon de la sphère muffin-tin, V(r) est le potentiel sphérique à l’intérieur de la 

sphère muffin-tin et VMTZ est la valeur du potentiel constant dans la région interstitielle. 

 

Figure II.1: Représentation de la répartition de la maille élémentaire en sphères Muffin-Tin et 

en région interstitielle. 

Les fonctions d’onde dans les deux régions seront obtenues par la résolution de l’équation de 

Schrödinger. Dans la région sphérique, elles sont représentées par le produit des fonctions 

radiales et harmoniques sphériques, et dans la région interstitielle elles sont tout simplement 

des ondes planes. 

II.3.Instruction de base: 

   La méthode des orbitales muffin-tin permet de résoudre les équations individuelles de 

Kohn-Sham en utilisant le principe variationnel linéaire de Rayleigh-Ritz. Ce principe repose 

sur le calcul des solutions propres variationnelles jk et des énergies Ejk correspondantes 

aux états électroniques  jk .Les fonctions d’ondes variationnelles jk , représentées 

dans la base MTO’s, sont construites à partir d’une combinaison linéaire de MTO’s RL qui 

sont des fonctions indépendantes de l’énergie, de symetrie L ≡ (l,m) et centrées sur des sites 

atomiques R


 en chaque point k


 de la zone de Brillouin 
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où k


 désigne le vecteur d’onde électronique, j l’indice de la bande, L l’abréviation du 

moment angulaire (l,m) et Ajk,RL désigne les coefficients d’expansion. L’utilisation de la forme 

de l’Eq. (II.2) et le développement des équations individuelles de Kohn-Sham sont à l’origine 

de leur transformation en un problème général de valeurs propres : 
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 représente les éléments des matrices hamiltoniennes dans 

la base des MTO’s et 
RLLRjk

O '',
≡ RLLR

 '' sont les éléments de matrices de recouvrement 

(overlap matrices), calculés de manière self-consistante sur un nombre limité de points k


appartenant à la partie irréductible de la zone de Brillouin pour chacune des bandes 

électroniques j. 

De ce fait, l’Eq. (II.3) formée à partir d’un système d’équations linéaires, est résolue par 

diagonalisation de l’hamiltonien. Elle permet ainsi de trouver les valeurs propres des énergies 

Ejk et les valeurs propres des coefficients Ajk,RL correspondantes. 

Les coefficients Ajk,RL étant trouvés, ils seront utilisés pour construire les solutions 

variationnelles jk  puis les densités électroniques   des états occupés, soit : 

 

 

La base MTO’s, construite à partir de la combinaison des solutions des équations de 

Schrödinger, constitue une base convenable pour calculer les solutions propres jk et les 

énergies correspondantes Ejk, avec des erreurs estimées au troisième et au second ordre en 

(Ejk-ERlv) respectivement, à l’intérieur et en dehors de la sphère muffin-tin ; ERlv étant une 

énergie constante et arbitraire choisie au centre de la partie occupée d’une bande (l = s, p, 

d….). 

II.4. Augmentation dans la méthode FP-LMTO : 

   La formulation et l'augmentation de pseudo-potentielles sont deux approches de concurrence 

pour présenter les détails atomiques dans la fonction d’onde près du noyau.  
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Quand une formulation pseudo potentielle est utilisée, c’est implicite : bien que seulement les 

fonctions lissées soient manipulées durant le calcul, les véritables fonctions d’ondes pourraient 

être de ces dernières d’une façon bien définie. Quand l’augmentation est utilisée, les fonctions de 

base sont explicitement construites pour montrer le changement énergétique et caractère 

oscillateur près de l’atome. Dans la première étape, l’espace est divisé en deux régions, la région 

des sphères atomiques et la région interstitielle. Dans toute la région interstitielle, les fonctions de 

base sont égales pour être lissent « fonctions enveloppes » qui dans notre cas sont des fonctions 

lissées de Hankel. A l’intérieur de chaque sphère atomique, chaque fonction enveloppe est 

remplacée par une solution numérique de l’équation de Schrödinger. Spécifiquement, dans la 

méthode linéaire. Les solutions numériques de l’équation de Schrödinger dans un potentiel 

sphérique et leurs dérivés d’énergie sont combinées pour rassembler lissement à la fonction 

enveloppe à la limite de la sphère. 

   En comparant les deux approches, en conservant la norme de la formulation du pseudo 

potentiel à un certain nombre d’avantages, une fois l’effort initial de construire le pseudo 

potentiel est complété. Les coupures du moment angulaire sont généralement basses et il est 

facile d’obtenir une expression de la force. En raison de la complexité de la procédure de 

l’augmentation, il est souvent difficile de tirer un théorème de force valable. 

 

II.3. Avantages et inconvénients de la méthode LMTO :  

   Les avantages de définir les fonctions de base de la méthode LMTO comme des fonctions 

de Hankel augmentées ne sont pas évidentes. Cela mène à un formalisme compliqué et un 

grand effort de programmation. D’ou l’avantage de la méthode LMTO.  

Les fonctions LMTO sont construites pour être semblables aux véritables fonctions d’onde du 

cristal. En fait, si le potentiel cristallin est approximé par la forme muffin-tin, c'est-à-dire, 

sphérique à l’intérieur et constant à l’extérieur, la véritable fonction d’onde du cristal devient 

une somme finie des fonctions LMTO.  

- Une conséquence de la petite taille de base, les calculs devraient être rapides. Plus 

précisément, la réduction de la base par la moitié qui peut sauver un sept-huitième du temps 

machine.  

- Une autre conséquence de la petite taille de la base est la réduction de la mémoire 

demandée, qui peut être également importante en économisant le temps machine quand on 

calcule les grands systèmes.  

- Les fonctions enveloppes de la méthode LMTO, c'est-à-dire, les fonctions de Hankel solide, 

sont plus simples analytiquement. Ceci aide à performer les différentes étapes qui doivent être 



faites. Finalement, beaucoup de propriétés utiles surviennent parce que ces fonctions sont des 

fonctions propres de l’opérateur de l’énergie cinétique.  

- En choisissant l’ensemble de base pour un système spécifique. L’intuition chimique peut 

être utilisée. La base peut être conçue en fonction du problème, elle peut être choisie pour 

chaque atome séparément, parfois les résultats peuvent être interprétés plus simplement dus 

aux fonctions de base atome-orienté.  

   L’inconvénient en calculant des intégrales tridimensionnelles employant une maille est, que 

l’effort de calcul peut facilement dominer toutes les autres étapes. Pour maintenir l’effort 

maniable, la plus grande priorité, c’est de rendre les fonctions à intégrer aussi lisse que 

possible. Ceci peut être fait en utilisant les fonctions lissées de Hankel comme fonctions 

enveloppes. Par exemple, considérant le Silicium avec un rayon muffin-tin de 2.2 bohr. Pour 

la base du LMTO standard, le lissage doit être apparent seulement à l’intérieur de la sphère 

MT, demandant un rayon lisse pas plus grand que 0.6 à 0.7 bohr. En dehors de la sphère 

centrale, les fonctions lissées et conventionnelles de Hankel sont alors identiques pour une 

précision acceptable.  

   L’espacement demandé de la maille d’intégration est approximativement 0.35 bohr. Si les 

fonctions se courbent au-dessus à l’extérieur de la sphère MT, on trouve que les fonctions de 

base optimales ont un rayon lissé d’environ 1.4 bohr. Pour ces fonctions, la maille 

d’intégration peut être deux fois plus brute. Par conséquent, le nombre de points de la maille 

et l’effort de calcul sont divisés par huit. On peut mentionner que dans l’implémentation 

finale, les éléments de matrice du potentiel lissé sont actuellement calculés dans l’espace 

réciproque. 

 

 

 

 

 

 

 

 



 

Référence: 

[1] F. Bloch, Z. Phys. 52 (1928) 555.  

[2] J.C. Slater, « Quantum Theory of Molecules and Solids », V2, Ch. (1965) 8.  

[3] C. Herring, Phys. Rev. 57 (1940) 1169.  

[4] J.C. Slater, Phys. Rev. 51 (1937) 846.  

[5] O.K. Andersen, Phys. Rev. B 12 (1975) 3060. 

[6] O.K. Andersen, T. Saha-Dasgubta, R.W. Tabk, C. Arcngeli, O. Jepsen, G. Krier, 

“Electronic Structure and Physical Properties of Solids” The use of the LMTO Method, Eds.; 

H. Dreyssé, Lecture Notes in Physics (Springer, Berlin) 3 (2000).  

 


