Chapter 1

Mathematical Reasoning

1.1 Mathematical Logic

1.1.1 Statements

A statement is a sentence which is either true or false, but not both simultaneously.

Example

```
a) 2 + 2 = 4 is a true statement.
b) 3 × 2 = 7 is a false statement.
c) For all x ∈ )belong to(R we have x <sup>2</sup> ≥ 0 is a true statement.
e) For all x ∈ R we have |x| = 1 is a false assertion.
```

1.1.2 Logical Operations

If P is an assertion and Q is another assertion, we will define new assertions constructed from P and Q

a) The logical operator "and" (A) (Conjunction)

Consider two statements P and Q.

The statement P and Q is true provided P is true and Q is true. Otherwise, P and Q is false. We summarize this in a truth table:

	$\mathbf{n} \wedge \mathbf{D}$
True	True
alse	False
True	False
	True False True

Exemple

a) $(3+5=8) \land (3 \times 6 = 18)$ est une assertion vraie. ST

```
b) (2+2=4) \land (2 \times 3=7) est une assertion fausse. SF
```

b) The logical operator "or" (V) (Disjunction)

The statement P or Q is true provided P is true, Q is true, or both are true. Otherwise, P or Q is false. We summarize this in a truth table:

Logical Disjunction		
p	q	$p \lor q$
F	F	\mathbf{F}
F	Т	Т
Т	F	Т
Т	Т	Т

Exemple

a) $(2+2=4) \lor (3 \times 2=6)$ est une assertion vraie.	ST
b) $(2 = 4) \lor (4 \times 3 = 7)$ est une assertion fausse.	SF

c) Logical negation "not" "~ p"

Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of *true* when its operand is false and a value of *false* when its operand is true. The <u>truth table</u> of "**not P**" also written "~ **p**"appears below:

p	$\neg p$
F	Т
Т	F

Exemple The negation of the assertion $3 \ge 0$ is the assertion 3 < 0.

d) Implication (\Rightarrow) "If, then"

The implication or conditional is the statement "If P then Q" and is de-

noted by $P \rightarrow Q$. The statement $P \rightarrow Q$ is often read as "P implies Q," that $P \rightarrow Q$ is false only when P is true and Q is false

p	q	$\operatorname{Cond}(p,q)$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

All of the following have the same meaning:

If P, then Q.

P implies Q.

 $P \Rightarrow Q$ (read P implies Q)

Q, if P .

.

P only if Q.

Q when (or whenever) P .

Q is necessary for P .

P is sufficient for Q.

e) Equivalent (\Leftrightarrow) " if and only if"

The statement P if and only if Q, written $P \Leftrightarrow Q$, is equivalent to the statement ($P \Rightarrow Q$) and ($Q \Rightarrow P$).

 $P \Leftrightarrow Q$ is true provided P and Q have the same truth value. If P and Q do not have the same truth value, then $P \Leftrightarrow Q$ is false.

P	Q	$P \Leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

1.1.3 Quantifiers

• For an open setence P (x), we have the propositions ($\exists x$)P (x) which is true when there exists at least one x for which P (x) is true.

The symbol \exists is called the existential quantifier.

 $\exists x \in$)belong to(E, P (x) est une assertion vraie lorsque l'on peut trouver au moins un élément x de E pour lequel P (x) est vraie. On lit il existe x appartenant à E tel que P (x) (soit vraie).

<u>Remark</u>. The existential statement $(\exists x)P(x)$

may be read as:

- "There exists x such that P (x)."
- "There exists x for which P (x)."
- "For some x, P (x).
- (∀x)P (x) which is true when P (x) is true for every x. The symbol ∀ is called the universal quantifier.

 $\forall x \in$)belong to(E, P (x) est une assertion vraie lorsque les assertions P (x) sont vraies pour tous les éléments x de l'ensemble E. On lit : pour tout x appartenant à E, P (x) est vraie.

<u>Remark</u>. the universal statement $(\forall x)P(x)$ may be read as:

- "For all x, P (x)."
- "For every x, P (x)."
- "For each x, P (x)."

The symbol ∀ was chosen as an inverted A for "all."

• Negations of quantified statements

- The negation of for all n, P (n) is:

there exists n such that not(P (n)).

$$(\forall x \in E, P(x))$$
 est $\left(\exists x \in E, \overline{P(x)}\right)$.

Exemple : the negation of $\left(\forall x \in \mathbb{R} : \underbrace{x^2 \ge 0}_{P(x)} \right)$ is $\exists x \in \mathbb{R} : \underbrace{x^2 < 0}_{\overline{P(x)}}$.

- The negation of there exists n such that P (n) is:

for all n, not(P (n)).

$$(\exists x \in E, P(x))$$
 est $(\forall x \in E, \overline{P(x)})$.

If n is divisible by 4, then n is even,

Its negation is therefore:

There is an integer n such that n is divisible by 4 and n is not even.

Exemple : the negation of
$$\begin{pmatrix} \exists x \in \mathbb{R} : \underbrace{x < 0}_{P(x)} \end{pmatrix}$$
 is $\forall x \in \mathbb{R} : \underbrace{x \ge 0}_{\overline{P(x)}}$

1.1.4 Summary of Negations

The negations of common logical expressions are summarized in the following table :

statement	negation
P and Q	$(not \ P) \ or \ (not \ Q)$
P or Q	(not P) and (not Q)
$P \Rightarrow Q$	P and (not Q)
$P \Leftrightarrow Q$	(P and not Q) or (Q and not P)
$\forall n, P(n)$	$\exists n \text{ such that } not(P(n))$
$\exists n \text{ such that } P(n)$	$\forall n, not(P(n))$

1.2Proof Methods

1.2.1 Direct Proofs

We want to show that the assertion $P \Rightarrow$ implies Q is true. We assume that P is true and we then show that Q is true.

Example: Let a, $b \in R$. Show that $a = b \Rightarrow \frac{a+b}{2} = b$.

Let's take a = b, then $\frac{a}{2} = \frac{b}{2}$, SO $\frac{a}{2} + \frac{b}{2} = \frac{b}{2} + \frac{b}{2}$. as well as $\frac{a+b}{2} = b$.

1.2.2 Proof by contrapositive

Proof by contrapositive is based on the following equivalence :

$$(\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow (\sim \mathbf{Q} \Rightarrow \sim \mathbf{P})$$

Recall that the statement $P \Rightarrow Q$ has the same truth value as its contrapositive (not Q) \Rightarrow (not P).

Therefore, if you wish to prove that $P \Rightarrow Q$ is true, you may prove instead that its contrapositive is true.

This is called proof by contrapositive: you suppose not Q as your hypothesis and show that, under that assumption, not P is true

Exemple :

Let $x \in (belonged) R$. Show that

$$\underbrace{(x \neq 2 \ et \ x \neq -2)}_{P} \Rightarrow \underbrace{(x^{2} \neq 4)}_{Q}.$$

By contraposition this is equivalent :

$$\underbrace{\left(x^2=4\right)}_{\overline{Q}} \Rightarrow \underbrace{\left(x=2 \ ou \ x=-2\right)}_{\overline{P}}.$$

indeed, let's take $x^2 = 4$, then (x - 2)(x + 2) = 0, therefore x = 2 or x = -2.

1.2.3 **Proof by Contradiction**(<u>absurdity</u>)

to show $P \Rightarrow Q$, is based on the following principle:

We assume both that P is true and that Q is false and we look for a contradiction. So if P is true then Q must be true and therefore $P \Rightarrow Q$ is true.

Exemple :

Let a, b > 0. Show that if $\frac{a}{1+b} = \frac{b}{1+a} \Rightarrow a = b.$

We reason absurdly by supposing that

 $\frac{a}{1+b} = \frac{b}{1+a} \quad et \quad a \neq b.$

We have

$$\begin{pmatrix} \frac{a}{1+b} = \frac{b}{1+a} \end{pmatrix} \iff a (a+1) = b (b+1)$$

$$\Leftrightarrow a^2 - b^2 = -(a-b)$$

$$\Leftrightarrow (a-b) (a+b) = -(a-b)$$

This is equivalent

$$(a-b)(a+b) = -(a-b) \quad et \quad a-b \neq 0.$$

so by dividing by (a - b) we obtain

$$a+b=-1.$$

The sum of two positive numbers cannot be negative. We get a contradiction.

1.2.4 **Proof by Induction (recurrence)**

The principle of Proof by Induction allows us to show that an assertion P (n), depending on n, is true for all $n \in N$. The proof by induction takes place in two steps:

i) We prove P (0) is true. On prouve P (0) est vraie. ii) We assume $n \ge 0$ given with P (n) true, and we then demonstrate that the assertion P (n + 1) is true.

Finally in the conclusion, we recall that by the principle of recurrence P (n) is true for all $n \in N$.

Exemple :

Prove $2^n > n+4$ for $n \ge 3, n \in \mathbb{N}$.

Solution

Let n = 3. Then $2^3 > 3 + 4$ is true since clearly 8 > 7. Thus the statement is true for n = 3. Assume that $2^n > n + 4$ is true for some n = k. We will show that $2^{k+1} > (k + 1) + 4$. Consider $2^{k+1} = 2 \cdot 2^k > 2 \cdot (k + 4) = 2k + 8$. Since 2k > k + 1 and 8 > 4, we have 2k + 8 > (k + 1) + 4. Thus the statement is true for all n = k. By induction, $2^n > n + 4$ for all $n \ge 3, n \in \mathbb{Z}$. \Box

Exemple 2 Show that for all $n \in N$: $2^n > n$.

Let us note P (n): $2^n > n$, for all $n \in N$.

We will demonstrate by induction that P (n) is true for all $n \in N$.

- i) For n = 0 we have $2^0 = 1 > 0$, so P (0) is true.
- ii) Let $n \in N$, suppose P(n) is true. We will show that P (n + 1) is true. $2^{n+1} = 2^n + 2^n$ $> n + 2^n$, because by P (n) we know that $2^n > n$, $\ge n + 1$, because $2^n \ge 1$ So P(n + 1) is true.