Chapter 1

Mathematical Reasoning

1.1 Mathematical Logic
1.1.1 Statements

A statement is a sentence which is either true or false, but not both
simultaneously.
Example

a) 2+ 2 =4is atrue statement.

b) 3 x2 =7 is a false statement.

c) For all x € )belong to(R we have x 2> 0 is a
true statement.

e) For all x € R we have |x| = 1is a false
assertion.

1.1.2 Logical Operations

If P is an assertion and Q is another assertion, we will define new assertions
constructed from P and Q

a) The logical operator "and" (A) (Conjunction)
Consider two statements P and Q.

The statement P and Q is true provided P is true and Q is true. Otherwise, P and
Q is false. We summarize this in a truth table:

A B AAB
True @ True @ True

True | False | False

Exemple False True False
a) (3+5=8) A (3 x6=18) est une assertion vraie. ST
b) (24 2=4) A (2x3=T) est une assertion fausse. SF

b) The logical operator "or" (V) (Disjunction)



The statement P or Q is true provided P is true, Q is true, or both are true.
Otherwise, P or Q is false. We summarize this in a truth table:

Logical Disjunction

P q pvg

F F F

F T T

T F T

T T T

Exemple

a) (242=4)V (3 x2=0) est une assertion vraie. ST
b) (2=4)Vv (4 x3=T) est une assertion fausse. SE

c) Logical negation “not” “~ p”

Logical negation is an operation on one logical value, typically the value of a proposition,
that produces a value of true when its operand is false and a value of false when its operand is

true. The truth table of “not P also written “~ p”’appears below:

p p
F T
T F

Exemple The negation of the assertion 3 2 0 is the assertion 3 < 0.

d) Implication (=) " If, then”

The implication or conditional is the statement “If P then Q” and is de-

noted by P - Q.. The statement P -Q is often read as “P implies Q,” that

P =>Qiis false only when P is true and Q is false


https://en.wikiversity.org/wiki/Truth_table

P q Cond(p, q)
F F T
F T T
T F F
T T T

All of the following have the same meaning:
If P, then Q.

P implies Q.

P = Q (read P implies Q)

Q,ifP.

Ponlyif Q.

Q when (or whenever) P .

Q is necessary for P .

P is sufficient for Q.

Equivalent (&) “ if and only if”’

The statement P if and only if Q, written P & Q, is equivalent to the

statement (P=>Q)and (Q=P).

P & Qs true provided P and Q have the same truth value. If P and Q do

not have the same truth value, then P & Q is false.

PlQ|PeQ
T|[T| T
T|F F
F|T F
F|F T




1.1.3

Quantifiers

e For an open setence P (x), we have the propositions (3x)P (x) which is
true when there exists at least one x for which P (x) is true.

The symbol 3 is called the existential quantifier.

3dx E)belong to( E, P (x) est une assertion vraie lorsque I'on peut trouver au
moins un élément x de E pour lequel P (x) est vraie. On lit il existe x
appartenant a E tel que P (x) (soit vraie).

Remark . The existential statement (3x)P (x)
may be read as:

* “There exists x such that P (x).”

* “There exists x for which P (x).”

* “For some x, P (x).

e (Vx)P (x) which is true when P (x) is true for every x. The symbol V is
called the universal quantifier.

Vx €)belong to( E, P (x) est une assertion vraie lorsque les assertions P
(x) sont vraies pour tous les éléments x de I'ensemble E. On lit : pour tout
X appartenant a E, P (x) est vraie.

Remark . the universal statement (Vx)P (x) may be read as:
e “Forall x, P (x).”

* “For every x, P (x).”

* “For each x, P (x).”

The symbol ¥V was chosen as an inverted A for “all.”



e Negations of quantified statements
- The negation of for all n, P (n) is:

there exists n such that not(P (n)).

(Vze B, P(x)) est (3.::.‘6!3-. P(Jr)).

N e’

Exemple : the negation of (\ﬁ: €R:2’ > 0) iS JrcR:22<0.
Plz)

P(z)

- The negation of there exists n such that P (n) is:

for all n, not(P (n)).

3z e E, P(z)) est (v.:;.- €E, P (.r)) .
If nis divisible by 4, then n is even,

Its negation is therefore:

There is an integer n such that n is divisible by 4 and n is not even.

. JreR:z <0 . YVreR:x >0
Exemple : the negation of w5 ) s ——

F(x)

1.1.4 Summary of Negations

The negations of common logical expressions are summarized in the following
table :

statement ‘ negation
Pand Q (not P) or (not Q)
PorQ (not P) and (not Q)
P=qQ P and (not QQ)
P&eQ (P and not Q) or (Q and not P)
Vn, P(n) dn such that not(P(n))
Jn such that P(n) Vn, not(P(n))

1.2Proof Methods



1.2.1 Direct Proofs

We want to show that the assertion P = implies Q is true. We assume
that P is true and we then show that Q is true.

b b b aswellas ﬂlb_b
7}5—7{7. —2 = 0.

Let's take a = b, then

Il

| &=
(%]
o

122 Proof by contrapositive
Proof by contrapositive is based on the following equivalence :

(P=Q)= (~Q=~P)

Recall that the statement P = Q has the same truth value as its contrapositive (not Q) = (not
P).

Therefore, if you wish to prove that P = Q is true, you may prove instead that its
contrapositive is true.

This is called proof by contrapositive: you suppose not Q as your hypothesis and show that,
under that assumption, not P is true

Exemple :
Let x €(belonged) R. Show that

(x#2etw#-2)= (2* #4).
p — %
F Q

By contraposition this is equivalent :

(2 =4) = (=2 ouz=-2).
e’ ~

Q P

indeed, let's take x 2 = 4, then (x - 2) (x + 2) = 0, therefore x =2 or x = -2.

1.2.3  Proof by Contradiction(absurdity)


https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjR1cmwiNOBAxVgdqQEHbqwAeYQwqsBegQIChAF&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DICdjvfiwK7w&usg=AOvVaw2JYjUqrPjmXOoTJ58SsyW8&opi=89978449

to show P = Q, is based on the following principle:

We assume both that P is true and that Q is false and we look for a
contradiction. So if P is true then Q must be true and therefore P = Q_is true.

Exemple : .
1

= = a = bh.
Leta, b>0.Showthatif 145 14+ a “

We reason absurdly by supposing that

= et a#b.

We have

a b _ |
(1 J b = 1 | ({) ~ (l’.l’. | J_) _Ej(h } 1)
e a2 =— (@ —b)

< (a—=b)la+b)=—(a—-0b)

This is equivalent

(a=b)(a+b)=—(a—b) et a—b#0.

so by dividing by (a — b) we obtain
a+b=—1.

The sum of two positive numbers cannot be negative. We get a contradiction.

1.2.4  Proof by Induction (recurrence)

The principle of Proof by Induction allows us to show that an assertion P (n),
depending on n, is true for all n € N. The proof by induction takes place in two
steps:

) We prove P (0) is true.

On prouve P (0) est vraie.



i)  We assume n > 0 given with P (n) true, and we then demonstrate that the
assertion P (n + 1) is true.

Finally in the conclusion, we recall that by the principle of recurrence P (n) is

true for all n € N,

Exemple :

Prove2" >n+4forn=3neN,

Solution

Let n = 3. Then 2° > 3 + 4 is true since clearly 8 > 7. Thus the statement is true for » = 3.
Assume that 2" > n + 4 is true for some n = .

We will show that 2! > (k+1) + 4,

Consider 2" =2-2>2. (k+4) =2k +8,

Since 2k > k+1land 8 > 4, we have 2k +8 > (k +1) +4,

Thus the statement is true for all » = k.

By induction, 2" > n+4foralln > 3,n € Z,0

Exemple 2 Show that for alln € N: 2" > n.
Let us note P (n): 2" >n, foralln € N.

We will demonstrate by induction that P (n) is true for all n € N.
i) Forn=0we have 2°=1>0, so P (0) is true.
i) Let n € N, suppose P(n) is true. We will show that P (n + 1) is true.
2Mml =204 20
>n+2", because by P (n) we know that 2" > n,
>n+1, because 2">1

So P(n + 1) is true.



