
Chapter 1 

 Mathematical Reasoning 

 

1.1 Mathematical Logic 

1.1.1 Statements 

A statement is a sentence which is either true or false, but not both 

simultaneously. 

Example  

a) 2 + 2 = 4 is a true statement.  
b) 3 × 2 = 7 is a false statement.  
c) For all x ∈ )belong to(R we have x 2 ≥ 0 is a 
true statement.  
e) For all x ∈ R we have |x| = 1 is a false 
assertion. 

 

 

1.1.2 Logical Operations 

If P is an assertion and Q is another assertion, we will define new assertions 

constructed from P and Q 

a) The logical operator "and" (∧) (Conjunction) 

Consider two statements P and Q. 

The statement P and Q is true provided P is true and Q is true. Otherwise, P and 

Q is false. We summarize this in a truth table: 
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b) The logical operator "or" (∨) (Disjunction) 



The statement P or Q is true provided P is true, Q is true, or both are true. 

Otherwise, P or Q is false. We summarize this in a truth table: 
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c) Logical negation “not” “~ p” 

Logical negation is an operation on one logical value, typically the value of a proposition, 

that produces a value of true when its operand is false and a value of false when its operand is 

true. The truth table of “not P” also written “~ p”appears below:  

 

 

Exemple  The negation of the assertion 3 ≥ 0 is the assertion 3 < 0. 

 

d) Implication (⇒)  ’’ If, then’’ 

The implication or conditional is the statement “If P then Q” and is de- 

noted by P → Q . The statement P →Q is often read as “P implies Q,” that 

P →Q is false only when P is true and Q is false 

https://en.wikiversity.org/wiki/Truth_table


 

All of the following have the same meaning: 

If P , then Q. 

P implies Q. 

P ⇒ Q (read P implies Q) 

Q, if P . 

P only if Q. 

Q when (or whenever) P . 

Q is necessary for P . 

P is sufficient for Q. 

 

e) Equivalent (⇔) ‘’ if and only if’’ 

The statement P if and only if Q, written P ⇔ Q, is equivalent to the 

statement (P ⇒ Q) and (Q ⇒ P ). 

P ⇔ Q is true provided P and Q have the same truth value. If P and Q do 

not have the same truth value, then P ⇔ Q is false. 

 

 

 

 

 

  

.  

 



1.1.3 Quantifiers 

• For an open setence P (x), we have the propositions (∃x)P (x) which is 

true when there exists at least one x for which P (x) is true. 

The symbol ∃ is called the existential quantifier. 

 

∃x ∈)belong to( E, P (x) est une assertion vraie lorsque l'on peut trouver au 

moins un élément x de E pour lequel P (x) est vraie. On lit il existe x 

appartenant à E tel que P (x) (soit vraie). 

 

Remark  . The existential statement (∃x)P (x) 

may be read as: 

• “There exists x such that P (x).” 

• “There exists x for which P (x).” 

• “For some x, P (x).  

 

• (∀x)P (x) which is true when P (x) is true for every x. The symbol ∀ is 

called the universal quantifier. 

 

∀x ∈)belong to(  E, P (x) est une assertion vraie lorsque les assertions P 

(x) sont vraies pour tous les éléments x de l'ensemble E. On lit : pour tout 

x appartenant à E, P (x) est vraie. 

Remark  .  the universal statement (∀x)P (x) may be read as: 

• “For all x, P (x).” 

• “For every x, P (x).” 

• “For each x, P (x).” 

The symbol ∀ was chosen as an inverted A for “all.” 

 

 

 



• Negations of quantified statements 

- The negation of for all n, P (n) is: 

                    there exists n such that not(P (n)). 

 

 

Exemple : the negation of                              is  

 

- The negation of there exists n such that P (n) is: 

                    for all n, not(P (n)). 

 

 

 If n is divisible by 4, then n is even, 

Its negation is therefore: 

             There is an integer n such that n is divisible by 4 and n is not even. 

 

 

Exemple : the negation of                              is  

 

1.1.4 Summary of Negations 

The negations of common logical expressions are summarized in the following 

table : 

 

 

 

 

 

  

1.2 Proof Methods 



1.2.1 Direct Proofs 

We want to show that the assertion P ⇒ implies Q is true. We assume 

that P is true and we then show that Q is true. 

 

Example: Let a, b ∈ R. Show that   

 

Let's take a = b, then                  SO                                        as well as  

 

 

1.2.2 Proof by contrapositive 
Proof by contrapositive is based on the following equivalence : 

(P ⇒ Q )⇔ (∼ Q ⇒∼ P) 
 

Recall that the statement P ⇒ Q has the same truth value as its contrapositive (not Q) ⇒ (not 

P ). 

Therefore, if you wish to prove that P ⇒ Q is true, you may prove instead that its 

contrapositive is true. 

This is called proof by contrapositive: you suppose not Q as your hypothesis and show that, 

under that assumption, not P is true 

 

 
Exemple : 
Let x ∈(belonged) R. Show that 

 

 
By contraposition this is equivalent : 

 

indeed, let's take x 2 = 4, then (x − 2) (x + 2) = 0, therefore x = 2 or x = −2. 

 

 

1.2.3 Proof by Contradiction(absurdity) 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjR1cmwiNOBAxVgdqQEHbqwAeYQwqsBegQIChAF&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DICdjvfiwK7w&usg=AOvVaw2JYjUqrPjmXOoTJ58SsyW8&opi=89978449


to show P ⇒ Q, is based on the following principle:  

We assume both that P is true and that Q is false and we look for a 

contradiction. So if P is true then Q must be true and therefore P ⇒ Q is true. 

 

Exemple : 

Let a, b > 0. Show that if  

 

We reason absurdly by supposing that 

 

 

 

We have  

 

 

This is equivalent 

 

 

so by dividing by (a – b) we obtain 

 

The sum of two positive numbers cannot be negative. We get a contradiction. 

 

1.2.4 Proof by Induction (recurrence) 

 

The principle of Proof by Induction allows us to show that an assertion P (n), 

depending on n, is true for all n ∈ N. The proof by induction takes place in two 

steps: 

i) We prove P (0) is true. 
On prouve P (0) est vraie. 



ii) We assume n ≥ 0 given with P (n) true, and we then demonstrate that the 

assertion P (n + 1) is true. 

Finally in the conclusion, we recall that by the principle of recurrence P (n) is 

true for all n ∈ N. 

Exemple : 

 

 

Exemple 2 Show that for all n ∈ N: 2n > n. 

Let us note P (n): 2n > n, for all n ∈ N. 

We will demonstrate by induction that P (n) is true for all n ∈ N. 

i) For n = 0 we have 20 = 1 > 0, so P (0) is true.  

ii) Let n ∈ N, suppose P(n) is true. We will show that P (n + 1) is true. 

 2n+1 = 2n + 2n  

 > n + 2n , because by P (n) we know that 2n > n, 

 ≥ n + 1, because 2n ≥ 1  

So P(n + 1) is true. 

 

 

 


