Chapter 1

Mathematical Reasoning

1.1 Mathematical Logic

1.1.1 Statements

A statement is a sentence which is either true or false, but not both simultaneously.

Example

a) $2+2=4$ is a true statement.
b) $3 \times 2=7$ is a false statement.
c) For all $x \in$)belong to(R we have $x^{2} \geq 0$ is a true statement.
e) For all $x \in R$ we have $|x|=1$ is a false assertion.

1.1.2 Logical Operations

If P is an assertion and Q is another assertion, we will define new assertions constructed from P and Q
a) The logical operator "and" (\wedge) (Conjunction)

Consider two statements P and Q .
The statement P and Q is true provided P is true and Q is true. Otherwise, P and Q is false. We summarize this in a truth table:

Exemple

A	B	$A \wedge B$
True	True	True
True	False	False
False	True	False

a) $(3+5=8) \wedge(3 \times 6=18)$ est une assertion vraie. ST
b) $(2+2=4) \wedge(2 \times 3=7)$ est une assertion fausse. SF
b) The logical operator "or" (V) (Disjunction)

The statement P or Q is true provided P is true, Q is true, or both are true. Otherwise, P or Q is false. We summarize this in a truth table:

Logical Disjunction

p	q	$p \vee q$
F	F	F
F	T	T
T	F	T
T	T	T

Exemple

a) $(2+2=4) \vee(3 \times 2=6)$ est une assertion vraie.

ST
b) $(2=4) \vee(4 \times 3=7)$ est une assertion fausse.

SF
c) Logical negation "not" "~ \mathbf{p} "

Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true. The truth table of "not \mathbf{P} " also written " $\sim \mathbf{p}$ " appears below:

p	$\neg p$
F	T
T	F

Exemple The negation of the assertion $3 \geq 0$ is the assertion $3<0$.
d) Implication (\Rightarrow) " If, then"

The implication or conditional is the statement "If P then Q " and is denoted by $P \rightarrow Q$. The statement $P \rightarrow Q$ is often read as " P implies Q," that $P \rightarrow Q$ is false only when P is true and Q is false

p	q	$\operatorname{Cond}(p, q)$
F	F	T
F	T	T
T	F	F
T	T	T

All of the following have the same meaning:
If P, then Q.
P implies Q .
$P \Rightarrow Q($ read P implies $Q)$
Q, if P.
P only if Q.
Q when (or whenever) P.
Q is necessary for P.
P is sufficient for Q.
e) Equivalent (\Leftrightarrow) " if and only if"

The statement P if and only if Q, written $P \Leftrightarrow Q$, is equivalent to the statement $(P \Rightarrow Q)$ and $(Q \Rightarrow P)$.
$P \Leftrightarrow Q$ is true provided P and Q have the same truth value. If P and Q do not have the same truth value, then $P \Leftrightarrow Q$ is false.

P	Q	$P \Leftrightarrow Q$
T	T	T
T	F	F
F	T	F
F	F	T

1.1.3 Quantifiers

- For an open setence $P(x)$, we have the propositions $(\exists x) P(x)$ which is true when there exists at least one x for which $P(x)$ is true.

The symbol \exists is called the existential quantifier.
$\exists x \in$)belong to($E, P(x)$ est une assertion vraie lorsque l'on peut trouver au moins un élément x de E pour lequel $P(x)$ est vraie. On lit il existe x appartenant à E tel que $P(x)$ (soit vraie).

Remark. The existential statement ($\exists \mathrm{x}$) $\mathrm{P}(\mathrm{x})$
may be read as:

- "There exists x such that $P(x) . "$
- "There exists x for which $P(x)$."
- "For some x, P (x).
- $(\forall x) P(x)$ which is true when $P(x)$ is true for every x. The symbol \forall is called the universal quantifier.
$\forall x \in$)belong to($E, P(x)$ est une assertion vraie lorsque les assertions P (x) sont vraies pour tous les éléments x de l'ensemble E. On lit : pour tout x appartenant à $\mathrm{E}, \mathrm{P}(\mathrm{x})$ est vraie.

Remark. the universal statement $(\forall x) P(x)$ may be read as:

- "For all x, P (x)."
- "For every $x, P(x) . "$
- "For each x, P (x)."

The symbol \forall was chosen as an inverted A for "all."

- Negations of quantified statements

- The negation of for all $n, P(n)$ is:
there exists n such that $\operatorname{not}(P(n))$.
$(\forall x \in E, \quad P(x)) \quad$ est $\quad(\exists x \in E, \quad \overline{P(x)})$.

Exemple : the negation of $(\forall x \in \mathbb{R}: \underbrace{x^{2} \geq 0}_{P(x)})$ is $\exists x \in \mathbb{R}: \underbrace{}_{\frac{x^{2}<0}{x^{2}(x)}}$.

- The negation of there exists n such that $P(n)$ is:
for all $n, \operatorname{not}(P(n))$.

$$
(\exists x \in E, \quad P(x)) \quad \text { est } \quad(\forall x \in E, \quad \overline{P(x)}) .
$$

If n is divisible by 4 , then n is even,
Its negation is therefore:
There is an integer n such that n is divisible by 4 and n is not even.

Exemple : the negation of $(\exists x \in \mathbb{R}: \underbrace{x<0}_{P(x)})$ is $\quad \forall x \in \mathbb{R}: \underbrace{x \geq 0}_{\frac{x}{P(x)}}$

1.1.4 Summary of Negations

The negations of common logical expressions are summarized in the following table :

statement	negation
P and Q	$($ not $P)$ or $(\operatorname{not} Q)$
P or Q	$($ not $P)$ and $($ not $Q)$
$P \Rightarrow Q$	P and $(\operatorname{not} Q)$
$P \Leftrightarrow Q$	$(P$ and not $Q)$ or $(Q$ and not $P)$
$\forall n, P(n)$	$\exists n$ such that $\operatorname{not}(P(n))$
$\exists n$ such that $P(n)$	$\forall n, \operatorname{not}(P(n))$

1.2Proof Methods

1.2.1 Direct Proofs

We want to show that the assertion $P \Rightarrow$ implies Q is true. We assume that P is true and we then show that Q is true.

Example: Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$. Show that $\quad a=b \Rightarrow \frac{a+b}{2}=b$.

Let's take $\mathrm{a}=\mathrm{b}$, then $\frac{a}{2}=\frac{b}{2}$, SO $\frac{a}{2}+\frac{b}{2}=\frac{b}{2}+\frac{b}{2}$. as well as $\frac{a+b}{2}=b$.

1.2.2 Proof by contrapositive

Proof by contrapositive is based on the following equivalence :

$$
(\mathbf{P} \Rightarrow \mathbf{Q}) \Leftrightarrow(\sim \mathbf{Q} \Rightarrow \sim P)
$$

Recall that the statement $P \Rightarrow Q$ has the same truth value as its contrapositive (not $Q) \Rightarrow$ (not P).

Therefore, if you wish to prove that $P \Rightarrow Q$ is true, you may prove instead that its contrapositive is true.
This is called proof by contrapositive: you suppose not Q as your hypothesis and show that, under that assumption, not P is true

Exemple :

Let $\mathrm{x} \in$ (belonged) R . Show that

$$
\underbrace{(x \neq 2 \text { et } x \neq-2)}_{P} \Rightarrow \underbrace{\left(x^{2} \neq 4\right)}_{Q} .
$$

By contraposition this is equivalent :

$$
\underbrace{\left(x^{2}=4\right)}_{\bar{Q}} \Rightarrow \underbrace{(x=2 \text { ou } x=-2)}_{\bar{P}} .
$$

indeed, let's take $x^{2}=4$, then $(x-2)(x+2)=0$, therefore $x=2$ or $x=-2$.

1.2.3 Proof by Contradiction(absurdity)

to show $P \Rightarrow Q$, is based on the following principle:
We assume both that P is true and that Q is false and we look for a contradiction. So if P is true then Q must be true and therefore $P \Rightarrow Q$ is true.

Exemple :

Let $\mathrm{a}, \mathrm{b}>0$. Show that if $\frac{a}{1+b}=\frac{b}{1+a} \Rightarrow a=b$.

We reason absurdly by supposing that

$$
\frac{a}{1+b}=\frac{b}{1+a} \quad \text { et } \quad a \neq b .
$$

We have

$$
\begin{aligned}
\left(\frac{a}{1+b}=\frac{b}{1+a}\right) & \Leftrightarrow a(a+1)=b(b+1) \\
& \Leftrightarrow a^{2}-b^{2}=-(a-b) \\
& \Leftrightarrow(a-b)(a+b)=-(a-b)
\end{aligned}
$$

This is equivalent

$$
(a-b)(a+b)=-(a-b) \quad \text { et } \quad a-b \neq 0
$$

so by dividing by $(a-b)$ we obtain

$$
a+b=-1 .
$$

The sum of two positive numbers cannot be negative. We get a contradiction.

1.2.4 Proof by Induction (recurrence)

The principle of Proof by Induction allows us to show that an assertion $\mathrm{P}(\mathrm{n})$, depending on n, is true for all $n \in N$. The proof by induction takes place in two steps:
i) We prove $P(0)$ is true.

On prouve $P(0)$ est vraie.
ii) We assume $n \geq 0$ given with $P(n)$ true, and we then demonstrate that the assertion $P(n+1)$ is true.
Finally in the conclusion, we recall that by the principle of recurrence $P(n)$ is true for all $n \in N$.

Exemple :

Prove $2^{n}>n+4$ for $n \geq 3, n \in \mathbb{N}$.

Solution

Let $n=3$. Then $2^{3}>3+4$ is true since clearly $8>7$. Thus the statement is true for $n=3$.
Assume that $2^{n}>n+4$ is true for some $n=k$.
We will show that $2^{k+1}>(k+1)+4$.
Consider $2^{k+1}=2 \cdot 2^{k}>2 \cdot(k+4)=2 k+8$.
Since $2 k>k+1$ and $8>4$, we have $2 k+8>(k+1)+4$.
Thus the statement is true for all $n=k$.
By induction, $2^{n}>n+4$ for all $n \geq 3, n \in \mathbb{Z}$.

Exemple 2 Show that for all $n \in N: 2^{n}>n$.
Let us note $P(n): 2^{n}>n$, for all $n \in N$.
We will demonstrate by induction that $P(n)$ is true for all $n \in N$.
i) For $n=0$ we have $2^{0}=1>0$, so $P(0)$ is true.
ii) Let $n \in N$, suppose $P(n)$ is true. We will show that $P(n+1)$ is true.

$$
\begin{aligned}
& 2^{n+1}=2^{n}+2^{n} \\
& >n+2^{n}, \text { because by } P(n) \text { we know that } 2^{n}>n \text {, } \\
& \geq n+1 \text {, because } 2^{n} \geq 1 \\
& \text { So } P(n+1) \text { is true. }
\end{aligned}
$$

