Équations différentielles (les équations 3,4,5 et 6 devoir- maison)

Résoudre les équations différentielles suivantes :

- 1. $a\ddot{x}+bx=0$ où a, $b\in \mathbb{R}$. Pour le reste des équations on prend a, b, $c\in \mathbb{R}^+$ et $f\in \mathbb{R}$.
- 2. $a\ddot{x}+bx = f\cos(\Omega t)$

3. $a\ddot{x}+bx=f e^{j\Omega t}$

4. $a\ddot{x}+b\dot{x}+cx=0$

5. $a\ddot{x}+b\dot{x}+cx=f\sin(\Omega t)$

6. $a\ddot{x}+b\dot{x}+cx=fe^{j\Omega t}$

Nombres complexes (les équations 5,6,7,8 et 9 devoir- maison)

Exprimer les nombres complexes suivants sous la forme exponentielle $\underline{Z} = |\underline{Z}| e^{j\theta}$ où $j^2 = -1$:

1.
$$Z = 1+2j$$

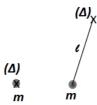
2.
$$Z = j$$

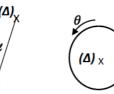
3.
$$Z = 1$$

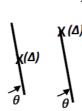
4.
$$\underline{Z} = \frac{3+4j}{1+2i}$$

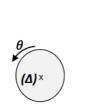
5.
$$\underline{Z} = \frac{3}{1+2j}$$

6.
$$\underline{Z} = \frac{4j}{1+2j}$$


7.
$$Z = (1+2j)(3+4j)$$


8.
$$Z = (1+2j)^2$$


9.
$$Z = (1+2j)(1-2j)$$

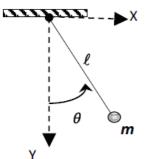

Moment d'inertie :

- On rappelle l'énoncé du théorème de Huygens : $I_{\Delta} = I_{\theta} + md^2$. Que signifie cette relation ?
- Donner les moments d'inertie des systèmes suivants par rapport à l'axe (1):

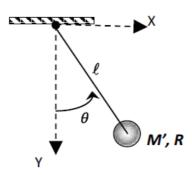
Une masse ponctuelle

Un cercle (M, R)

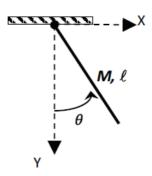
Une tige (M, ℓ)

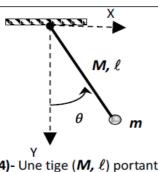

Un disque (M, R)

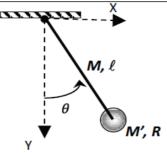
Energies cinétique et potentielle

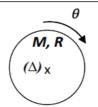

On rappelle que l'énergie cinétique d'un corps solide en mouvement est donnée par :

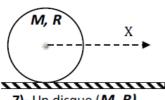
$$T = \frac{1}{2}mv^2 + \frac{1}{2}I_{/0}\dot{\theta}^2 = \frac{1}{2}I_{/(\Delta)}\dot{\theta}^2$$

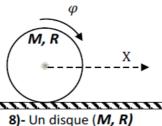

- Donner la signification de chaque terme de cette relation. D'où vient cette égalité ?
- Déterminer les énergies cinétique et potentielle des systèmes mécaniques suivants :

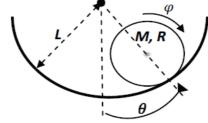

1)- Pendule simple : Un fil portant une masse ponctuelle

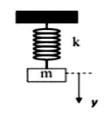

2)- Pendule physique : Un fil portant un disque (*M'*, *R*)

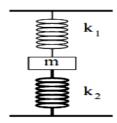

3)- Pendule physique : Une tige (M, ℓ)

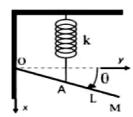

4)- Une tige (M, ℓ) portant une masse ponctuelle m


5)- Une tige (M, ℓ) portant un disque (M', R)


6)- Un disque (*M, R)* tournant sur son centre de gravité


7)- Un disque (*M, R)* qui glisse sans rouler


8)- Un disque (*M, R)* qui roule sans glisser


9)- Un disque (*M, R)* qui roule sans glisser sur un demi-cercle de rayon *L*

10)- Pendule oscillant

11)- Pendule oscillant à deux ressorts

12)- système tige + ressort